Mock Exam M1

PHYSICS

Paper 4 A Level Structured Questions

MARK SCHEME

Maximum Mark: 123

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2022 series for most
Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Question Answer		Marks
a	acceleration perpendicular to velocity	B1
b	decreases	B1
C	(acceleration of) $9.8 \mathrm{~ms}^{-2}$ is caused by weight of car or centripetal force must be greater than weight of car	B1
	(acceleration $>9.8 \mathrm{~m} \mathrm{~s}^{-2}$) requires contact force from track or (centripetal force > weight) requires contact force from track	B1
d	$1 / 2 m v_{y}{ }^{2}=1 / 2 m v_{x}{ }^{2}-m g h$	C1
	$a=v^{2} / r$	C1
	$\begin{aligned} & v_{y^{2}}=3.8^{2}-2 \times 9.81 \times 0.62 \text { so } v_{Y}=1.5 \mathrm{~m} \mathrm{~s}^{-1} \\ & a=1.5^{2} / 0.31=7.3 \mathrm{~ms}^{-2}\left(\text { which is less than } 9.8 \mathrm{~m} \mathrm{~s}^{-2}\right) \text { so no } \end{aligned}$	A1
	or	
	$\begin{aligned} & v_{Y}=\sqrt{ }(9.81 \times 0.31)=1.74 \mathrm{~m} \mathrm{~s}^{-1} \text { so } v_{x^{2}}=1.74^{2}+2 \times 9.81 \times 0.62 \\ & v_{X}=3.9 \mathrm{~m} \mathrm{~s}^{-1}\left(\text { which is greater than } 3.8 \mathrm{~m} \mathrm{~s}^{-1}\right) \text { so no } \end{aligned}$	(A1)
e	acceleration is independent of mass so makes no difference or mass cancels in the equation so makes no difference	B1

2

Question	Answer	Marks
(a)	(thermal) energy per unit mass (to cause temperature change)	B1
	(thermal) energy per unit change in temperature	B1
(b)(i)	($T=$) $p V / N k$	B1
(b)(ii)	$(p V=) N k T=1 / 3 N m<c^{2}>$ or $p V=N k T$ and $p V=1 / 3 N m<c^{2}>$	M1
	leading to $1 / 2 m\left\langle c^{2}\right\rangle=(3 / 2) k T$ and $1 / 2 m\left\langle c^{2}\right\rangle=E_{K}$	A1
(b)(iii)	internal energy $=\Sigma E_{K}$ (of molecules) $+\Sigma E_{P}$ (of molecules) or no forces between molecules	B1
	potential energy of molecules is zero	B1
(c)(i)	increase in internal energy = $Q+$ work done	B1
	constant volume so no work done	B1
(c)(ii)	$c=Q / N m \Delta T$	C1
	$=[N \times(3 / 2) k \Delta T] /(N m \Delta T)=3 k / 2 m$	A1
(d)	(as it expands) gas does work (against the atmosphere/external pressure)	B1
	for same temperature rise) more (thermal) energy needed, so larger specific heat capacity	B1

3

Question	Answer	Marks
2(a)(i)	(vertically) downwards	B1
2(a)(ii)	magnetic force (on sphere) is perpendicular to its velocity	B1
	magnetic force perpendicular to velocity is the centripetal force or magnetic force perpendicular to velocity causes centripetal acceleration or acceleration perpendicular to velocity is centripetal (acceleration) or magnetic force does not change the speed of the sphere or magnetic force has constant magnitude	B1
2(b)	$m g=E q$	C1
	$\begin{aligned} E & =\left(1.6 \times 10^{-10} \times 9.81\right) /\left(0.27 \times 10^{-9}\right) \\ & =5.8 \mathrm{NC}^{-1} \end{aligned}$	A1
2(c)	centripetal force $=$ magnetic force or $B q v=m v^{2} / r$	B1
	$B=m v / q r$	C1
	$=\left(1.6 \times 10^{-10} \times 0.78\right) /\left(0.27 \times 10^{-9} \times 3.4\right)=0.14 \mathrm{~T}$	A1

Question	Answer	Marks
2(a)	$p V=N k T$	C1
	$N=\left(1.8 \times 10^{-3} \times 3.3 \times 10^{5}\right) /\left(1.38 \times 10^{-23} \times 310\right)=1.4 \times 10^{23}$	A1
	or	
	$p V=n R T$ and $n N_{A}=N$	(C1)
	$N=\left(1.8 \times 10^{-3} \times 3.3 \times 10^{5} \times 6.02 \times 10^{23}\right) /(8.31 \times 310)=1.4 \times 10^{23}$	(A1)
2(b)	speed of molecule decreases on impact with moving piston	B1
	mean square speed (directly) proportional to (thermodynamic) temperature or mean square speed (directly) proportional to kinetic energy (of molecules) or kinetic energy (of molecules) (directly) proportional to (thermodynamic) temperature	B1
	kinetic energy (of molecules) decreases (so temperature decreases)	B1
2(c)(i)	$\Delta U=3 / 2 \times k \times \Delta T \times N$	C1
	$=3 / 2 \times 1.38 \times 10^{-23} \times(288-310) \times 1.4 \times 10^{23}$	C1
	$=-64 \mathrm{~J}$	A1
2(c)(ii)	decrease in internal energy is less than work done by gas	M1
	(thermal energy is) transferred to the gas (during the expansion)	A1

Question	Answer	Marks
(a)	acceleration in opposite direction to displacement shown by - sign	B1
	g / L is constant	M1
	(so) acceleration is (directly) proportional to displacement	A1
(b)	$\omega^{2}=g / L$	C1
	$\omega=2 \pi / T$ or $\omega=2 \pi f \text { and } f=1 / T$	C1
	$\begin{aligned} & (2 \pi / T)^{2}=9.81 / 0.18 \\ & T=0.85 \mathrm{~s} \end{aligned}$	A1
(c)	energy $\propto x_{0}{ }^{2}$	C1
	$\begin{aligned} \text { (after } 3 \text { cycles,) amplitude } & =(0.94)^{3} x_{0} \\ & =0.83 x_{0} \end{aligned}$	C1
	$\begin{aligned} \text { ratio final energy } / \text { initial energy } & =0.83^{2} \\ & =0.69 \end{aligned}$	A1

Question	Answer	Marks
(a)	work done per unit charge	B1
	(work done on charge) moving positive charge from infinity	B1
	$\left(2.0 \times 10^{-9}\right) / 4 \pi \varepsilon_{0}\left(4.0 \times 10^{-2}\right)+Q / 4 \pi \varepsilon_{0}\left(8.0 \times 10^{-2}\right)=0$	C1
	$Q=4.0 \times 10^{-9} \mathrm{C}$	A1
	Q given with negative sign	B1
(b)(ii)	change $=1200 \mathrm{~V}$	A1
(c)	$1 / 2 m v^{2}=q \mathrm{~V}$	C1
	$1 / 2 \times 4 \times 1.66 \times 10^{-27} \times V^{2}=2 \times 1.60 \times 10^{-19} \times 1200$	C1
	$v=3.4 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$	A1

Question	Answer	Marks
(a)	force acting between two masses or force on mass due to another mass or force on mass in a gravitational field	B1
(b)	arc length $=r \theta$ $d=1.5 \times 10^{17} \times 1.2 \times 10^{-5}=1.8 \times 10^{12} \mathrm{~m}$	A1
(c)(i)	$\omega=2 \pi / T$	C1
	$\begin{aligned} & =2 \pi /(44.2 \times 365 \times 24 \times 3600) \\ & =4.5 \times 10^{-9} \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	A1
(c)(ii)	gravitational forces are equal or centripetal force about P is the same	C1
	$M_{1} x \omega^{2}=M_{2}(d-x) \omega^{2}$ so $M_{1} / M_{2}=(d-x) / x$	A1
(c)(iii)	$x=0.4 d$	C1
	$6.67 \times 10^{-11} \times M_{1}=(1.0-0.4) \times\left(1.8 \times 10^{12}\right)^{3} \times\left(4.5 \times 10^{-9}\right)^{2}$	C1
	$M_{1}=1.1 \times 10^{30} \mathrm{~kg}$	A1

8

Question	Answer	Marks
(a)	(magnetic) flux density \times area \times number of turns	M1
	area is perpendicular to (magnetic) field	A1
(b)	use of $t=1.2 \mathrm{~s}$	C1
	$\begin{aligned} & \varepsilon=\frac{\Delta B A N}{\Delta t} \\ & =\frac{0.250 \times \pi \times 0.030^{2} \times 540}{1.2} \end{aligned}$	C1
	$=0.32 \mathrm{~V}$	A1
(c)(i)	light damping	B1

Question	Answer	Marks
(c)(ii)	sheet cuts (magnetic) flux and causes induced emf	B1
	(induced) emf causes (eddy) currents (in sheet)	B1
	either \quadcurrents (in sheet) cause resistive force or currents (in sheet) dissipate energy smaller currents in Y or larger currents in X, so dashed line is X	B1

Question	Answer	Marks
(a)(i)	electrons are accelerated (by an applied p.d.)	B1
	electrons hit target	B1
	X-rays produced when electrons decelerate	B1
(a)(ii)	images of the multiple sections are combined to create a 3-D image	B1
(b)(i)	$I=I_{0} \exp (-\mu x)$	C1
	$\begin{aligned} & =I_{0} \exp (-0.89 \times 5.6) \\ & =0.0068 I_{0} \end{aligned}$	A1
(b)(ii)	$I=I_{0} \exp (-2.4 \times 3.4) \times \exp (-0.89 \times 3.2)$	C1
	$=1.7 \times 10^{-5} I_{0}$	A1
(c)	comparison of intensities or values in (b) leading to conclusion consistent with these values	B1

Question	Answer	Marks
(a)	(particle is) stationary/not moving	B1
	(particle is) moving parallel to the (magnetic) field	B1
(b)	magnetic field around each coil is circular or each coil is normal to magnetic field due to adjacent coils	B1
	current in coil interacts with (magnetic) field to exert force (on coil)	B1
	force is normal to both coil and magnetic field or force parallel to axis (of coil)	B1
	forces between coils are attractive so spring contracts	B1
(c)	(oscillating) coils cut magnetic flux or as separation of coils changes, magnetic flux changes	B1
	cutting flux causes induced e.m.f. in coils	B1
	changing (induced) e.m.f. causes changing current (in coil)	B1

Question	Answer	Marks
(a)	magnetic field normal to current	B1
	newton per ampere	B1
	newton per metre	B1
(b)(i)	current in wire QL gives rise to a force or wire QL is perpendicular to the magnetic field	B1
	force on wire QL is vertical	B1
	force does not act through the pivot	B1
(b)(ii)	forces act through the same line or forces are horizontal	B1
	forces are equal (in magnitude) and opposite (in direction)	B1
(c)(i)	change $=m g \times(\Delta) L$	C1
	$=1.3 \times 10^{-4} \times 9.81 \times 2.6 \times 10^{-2}=3.3 \times 10^{-5} \mathrm{~N} \mathrm{~m}^{-1}$	A1
(c)(ii)	change $=B \times(\Delta) I \times L \times x$	C1
	$3.3 \times 10^{-5}=B \times 1.2 \times 0.85 \times 10^{-2} \times 5.6 \times 10^{-2}$	C1
	$B=0.058 \mathrm{~T}$	A1

12

Question	Answer	Marks
(a)(i)	energy required to separate nucleons (of nucleus)	M1
	to infinity	A1
(a)(ii)	a (single) large nucleus divides to form (smaller) nuclei	B1
	any one point from: - initiated by neutron bombardment - resulting nuclei are of similar size - binding energy per nucleon increases - total binding energy increases - neutrons released - combined mass of smaller nuclei is less than mass of large nucleus	B1
(b)	binding energy per nucleon is a maximum at around $A=56$	B1
	products of splitting a ${ }^{56} \mathrm{Fe}$ nucleus must have a lower total binding energy	B1
	(reaction would require) a net input of energy	B1

Question	Answer	Marks
(a)	wavelength of maximum intensity is inversely proportional to (thermodynamic) temperature	B1
(b)(i)	$\lambda_{\text {max }}=0.50 \mu \mathrm{~m}$ for A and $0.65 \mu \mathrm{~m}$ for B	C1
	$\begin{aligned} T & =5800 \times(0.50 / 0.65) \\ & =4500 \mathrm{~K} \end{aligned}$	A1
(b)(ii)	(star B has) greater peak / average wavelength	B1
	(star B looks) redder	B1
(c)(i)	apparent wavelength is greater or wavelength is greater than known value	B1
	(due to) movement of star away (from observer)	B1
(c)(ii)	by examining the (lines in the) spectrum (of light from the star)	B1
	and comparing with known spectrum	B1

