Mock Exam 2

PHYSICS	9702
Paper 4 A Level Structured Questions	2 hours
MARK SCHEME	

Maximum Mark: 84

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.
(a) energy $=1 / 2 m \omega^{2} a^{2}$ and $\omega=2 \pi f$

$$
=1 / 2 \times 37 \times 10^{-3} \times(2 \pi \times 3.5)^{2} \times\left(2.8 \times 10^{-2}\right)^{2}
$$

$$
=7.0 \times 10^{-3} \mathrm{~J}
$$

(allow $2 \pi \times 3.5$ shown as 7π)
Energy $=1 / 2 m v^{2}$ and $v=r \omega$
Correct substitution
Energy $=7.0 \times 10^{-3} \mathrm{~J}$
(b) $E_{K}=E_{P}$

$$
\begin{array}{lll}
1 / 2 m \omega^{2}\left(a^{2}-x^{2}\right)=1 / 2 m \omega^{2} x^{2} & \text { or } E_{K} \text { or } E_{P}=3.5 \mathrm{~mJ} & \\
x=a / \sqrt{ } 2=2.8 / \sqrt{ } 2 & \text { or } E_{K}=1 / 2 m \omega^{2}\left(a^{2}-x^{2}\right) & \text { or } E_{P}=1 / 2 m \omega^{2} x^{2} \\
=2.0 \mathrm{~cm} & \text { C1 } \\
\left(E_{K} \text { or } E_{P}=7.0 \mathrm{~mJ} \text { scores } 0 / 3\right) & \text { A1 } &
\end{array}
$$

$$
\begin{array}{ll}
\text { Allow: } & k=17.9 \\
& E=1 / 2 k x^{2} \\
& x=2.0 \mathrm{~cm}
\end{array}
$$

(c) (i) graph: $\begin{aligned} & \text { horizontal line, } y \text {-intercept }=7.0 \mathrm{~mJ} \text { with end-points of line at } \\ & +2.8 \mathrm{~cm} \text { and }-2.8 \mathrm{~cm}\end{aligned} \quad$ B1
(ii) graph: reasonable curve B
with maximum at $(0,7.0)$ end-points of line at $(-2.8,0) \quad$ B1
and $(+2.8,0)$
(iii) graph: inverted version of (ii) M1
with intersections at ($-2.0,3.5$) and (+2.0, 3.5) A1
[2]
(Allow marks in (iii), but not in (ii), if graphs K \& P are not labelled)
(d) gravitational potential energy

B1

	es		Answer	Marks	Guidance
2	a	i	$\begin{aligned} & V=9.0 \times \mathrm{e}^{-3.5 /(4700 \times 10 \wedge-6 \times 1400)} \mathrm{V} \\ & =5.29 \mathrm{~V} \end{aligned}$	2	Must give own value.
	a	ii	$\begin{aligned} & \Delta E=1 / 2 C\left(9.0^{2}-5.3^{2}\right)=0.124 \mathrm{~J} \checkmark \\ & \text { Power }=0.036 \mathrm{~W} \checkmark \end{aligned}$ Current through/ p.d. across component not constant	3	$3{ }^{\text {rd }}$ mark independent
	b		p.d. across capacitor when $E=300 \mathrm{~J}$, $V_{300 \mathrm{~J}}=\sqrt{ }(2 E / C)=\sqrt{ }(2 \times 300 \mathrm{~J} / 120 \mathrm{~F})=\sqrt{ } 5 \mathrm{~V}=2.24 \mathrm{~V} \checkmark$ p.d. across capacitor when $E=50 \mathrm{~J}, \mathrm{~V}_{50} \mathrm{~J}=0.91 \mathrm{~V} \checkmark$ $\text { time }=-\ln (0.91 / 2.24) \times 30 \times 10^{-3} \times 120=3.2 \mathrm{~s} \checkmark$ minimum value because no external load	3	Other routes may be used. Bald correct answer gains all three marks for the calculation.

Question		Answer	Marks	Guidance
(a)	(i)	$\begin{aligned} E & =k e / r^{2}=8.98 \times 10^{9} \times 1.6 \times 10^{-19} /\left[40 \times 10^{-12}\right]^{-2} \\ & =0.90 \times 10^{12}\left(\mathrm{~V} \mathrm{~m}^{-1}\right) \end{aligned}$	L L	Allow just $E=k e / r^{2}$ OR correct substitution for method mark allow use of $k=9 \times 10^{9}$ leading to 0.9×10^{12} evaluation of show that : allow 0.898×10^{12}
(a)	(ii)	expect two valid checks with 2 approx = numerical values OR0.9 TV m${ }^{-1} @ 40 \mathrm{pm}$ becomes $0.9 / 2^{2}=0.22$ TV m$^{-1}$ @ 80 pm two values here	MM	check: $E r^{2}=$ sensibly constant in range [1.4 to 1.5] $\times 10^{-9}$ Max 1 mark if one value just outside range Max 1 mark only for general statement : as r doubles E becomes $\times 1 / 4$ OR for 1 value of $E r^{2}$ Allow full credit for correct calculation without units
(a)	(iii)	```area represents p.d. OR potential difference OR \(\Delta V \checkmark\) 1 big \(s q \equiv 0.2 \times 10^{12} \times 20 \times 10^{-12}=4 \mathrm{~V}\) and about \(5 \pm 1 / 2\) big squares \(\approx 20 \pm 2 \mathrm{~V}\) OR \(=\Delta k e / r=9 \times 10^{9} \times 1.6 \times 10^{-19} \times\left[1 / 52 \times 10^{-12}-1 / 160 \times 10^{-12}\right] \checkmark\) \(=[27.7-9]=18.7 \mathrm{~V}\)```	H S\&C	```not unit of \(V\) evaluation by counting squares allow units not needed here if area \(\equiv\) voltage given already```
(b)	(i)	method: $m v^{2} / r=k e^{2} / r^{2} \rightarrow 1 / 2 m v^{2}=k e^{2} / 2 r \quad \checkmark$	H	requires algebraic argument
(b)	(ii)	$E_{\text {total }}=1 / 2 k e^{2} / r-k e^{2} / r=-1 / 2 k e^{2} / r$ graph is mirror image i.e. $-E_{\text {kinetic }}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	must be clear that $E_{\text {potential }}=-k e^{2} / r$ -mos

	(b)	(iii)	otherwise orbits would decay by (radiative emission) electron would spiral into proton	\mathbf{M}	any valid point: Allow without quantisation any energy or orbit radius would be allowed and there would be no specific energy levels OR no typical line spectrum
	(b)	(iv)	$r=53 \mathrm{pm}$		
	requires 14 eV so 14 V is ionization potential	\checkmark	S\&C	on total energy graph (to remove electron to ∞)	

	$N=\frac{\Phi}{A B}$ Or $N=\frac{1.5 \times 10^{-3}}{2.5 \times 10^{-2} \times 5.0 \times 10^{-4}} \checkmark_{1}$	$\checkmark_{1} N$ must be the subject of the equation for the mark. $\checkmark_{2} A$ correct answer gains both marks. If no mark is awarded a single mark can be given for $\Phi=B A N \cos 30^{\circ}$ being used to find $N=120$ (turns) \checkmark_{2}	2

	$\Phi\left(=\mathrm{NAB} \cos \theta=1.5 \times 10^{-3} \cos 30^{\circ}\right)$		1
Flux linkage $=1.3 \times 10^{-3}(\mathrm{~Wb}$ turns $) \checkmark$		1	

$\begin{aligned} & f=\frac{1}{T}=\frac{1}{0.25}=4.0(\mathrm{~Hz}) \text { or } \omega=25.1 \text { or } 8 \pi\left(\mathrm{rad} \mathrm{~s}^{-1}\right) \checkmark_{1} \\ & \text { Peak emf }\left(=B A N \frac{2 \pi}{T}=1.5 \times 10^{-3} \times \frac{2 \pi}{0.25}\right) \\ & =0.038 \text { (volt) } \checkmark_{2}(0.0377 \text { volt }) \end{aligned}$	\checkmark_{1} Condone using 1 sig fig for f but not ω or T. The mark can be gained from seeing f or ω or T given explicitly or from a substitution in the peak emf equation in the second mark. \checkmark_{2} A correct answer gains both marks.	2

| | | The mark is dependent on the exact crossing
 of the time axis which has a tolerance of ± 1
 small square. | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| The vertical axis figures is not expected. | | | |
| Also ignore errors in height and the exact | | | |
| positions of the peaks. | | | |
| Either solid or dashed line gains mark \checkmark | | 1 | |

6

Question		Answer	Marks	Guidance
(a)		recessional speed / velocity of galaxy is proportional to its distance (from us)	B1	Allow: recessional speed of galaxy $=$ Hubble constant \times distance
(b)	(i)	$v=1010\left(10^{3} \mathrm{~m} \mathrm{~s}^{-1}\right)$ d in the range 4.47 to $4.54\left(10^{23} \mathrm{~m}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Note: Answer to 4 sf is $1014\left(10^{3} \mathrm{~m} \mathrm{~s}^{-1}\right)$
	(ii)	(Straight line drawn through the points gradient $=$ Hubble constant, H_{0}) gradient $=2.24 \times 10^{-18}\left(\mathrm{~s}^{-1}\right)$ age $=\left(2.24 \times 10^{-18}\right)^{-1}$ age $=4.46 \times 10^{17}(\mathrm{~s})$ age $=1.4 \times 10^{10}(\mathrm{y})$	C1 C1 A1	Allow: gradient in the range 2.21 to 2.27×10^{-18} Allow ecf from incorrect value of the gradient Allow: A maximum of 2 marks if values from the table are used instead of the gradient of the line drawn on Fig. 11.2 Note: No marks for a bald 14 billion years
(c)		Big bang: Creation / birth / expansion / evolution of the universe or The universe was very hot / very dense / singularity (at the start) Evidence: Any one from: - Microwave / background radiation / 3 K (or 2.7 K) - Existence of (primordial) helium / lithium / lighter elements - Tiny variation (or ripples) in (background) temperature	B1 B1	Not: More matter than antimatter / baryonic asymmetry
		Total	9	

7

Question		Answer	Marks		
	(a)		curves path / slows velocity	\checkmark	L
	(b)		$\begin{array}{l}\text { allow accelerates the } \alpha / \text { changes direction / changes } \\ \text { velocity / slows down }\end{array}$		
	(most) has been stored as / converted to electrical				
\checkmark					

8

Question		Answer	Marks	Guidance
(a)	(i)	$\begin{aligned} \Delta m & =[1.008665-\{1.007276+0.000549\}]=0.00084 \mathrm{u} \checkmark \\ & =0.78(2)(\mathrm{MeV}) \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	find mass defect in u convert to MeV
(a)	(ii)	"missing" energy / momentum was carried by an (anti)neutrino / a particle of tiny rest mass and zero charge	M	Allow Energy (of beta particle) is shared with (anti)neutrino / a particle of tiny rest mass and zero charge
(a)	$\begin{gathered} \text { (iii) } \\ =1 \end{gathered}$	$A=\lambda N=\ln 2 / t_{1 / 2} \times 10^{4}$ 10 or $11\left(10.7 \mathrm{~s}^{-1}\right)$	M	Allow alternative method - e.g. calculate N remaining after 1 s (for 1 mark) and subtract from 104 (for second mark) evaluation do not penalise non-integer values
(a)	(iv)	d quark changes \rightarrow u quark $\quad \checkmark$	L	Allow udd \rightarrow uud

9

Question		Answer	Marks	Guidance
(a)	The patient is surrounded by (gamma) detectors or Increased activity is where F -18 accumulates (AW) The positrons (from the F-18) annihilate electrons (inside the patient) Each annihilation produces two gamma photons travelling in opposite directions The arrival times are used to locate position (of increased activity)	B1	B1	Allow diametrically opposite detectors'
(b)	$\lambda=\ln 2 / 110$ or gamma rays / radiation $0.30=\mathrm{e}^{-6.3 \times 10^{-3} t}$ $t=\frac{\ln (0.30)}{-6.3 \times 10^{-3}}\left(\mathrm{~min}^{-1}\right)$ $t=190($ minutes $)$	C1	Allow $1.05 \times 10^{-4}\left(\mathrm{~s}^{-1}\right)$	

10
(a) obeys the law pVIT = constant or any two named gas laws at all values of p, V and T
or two correct assumptions of kinetic theory of ideal gas (B1) third correct assumption (B1)
(b) (i) mean square speed
(ii) mean kinetic energy $\left.=1 / 2 m<c^{2}\right\rangle$
$\rho=N m / V$ and algebra leading to [do not allow if takes $N=1$]
$1 / 2 m\left\langle c^{2}\right\rangle=3 / 2 k T$
(c) (i) $1 / 2 \times 6.6 \times 10^{-27} \times\left(1.1 \times 10^{4}\right)^{2}=3 / 2 \times 1.38 \times 10^{-23} \times T$ $T=1.9 \times 10^{4} \mathrm{~K}$
(ii) Not all atoms have same speed/kinetic energy

B1 [1]

11

Question	Answer	Marks	Guidance
	brighter star could be closer brighter star could have a greater luminosity in the visible wavelengths	B1 B1	Allow reverse argument if clear Allow reverse argument if clear Allow 'emit more power' for 'have a greater luminosity' Allow brighter star is hotter
(b)	object with known luminosity	B1	Allow 'star' or 'galaxy' for 'object'
(c)(i)	$\frac{660.9-656.3}{656.3} \approx \frac{v}{3.0 \times 10^{8}}$ leading to $2.1 \times 10^{6} \mathrm{~ms}^{-1}$	B1	
(c)(ii)	$\begin{aligned} v & =H_{0} d \\ d & =2.1 \times 10^{6} / 2.3 \times 10^{-18} \\ & =9.1 \times 10^{23} \mathrm{~m} \end{aligned}$	C1 A1	Correct to at least 2 s.f. (9.13) AFC applies.
(c)(iii)	wavelength has increased / light is redshifted galaxy is moving away (from Earth) universe is expanding	B1 B1 B1	

