Mock Exam 2

You must answer on the question paper.
You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is $\mathbf{5 5}$.
- The number of marks for each question or part question is shown in brackets [].

1 The salaries, in thousands of dollars, of 11 people, chosen at random in a certain office, were found to be:
40, 42,
45, 41, 352,
40, 50,
48, $51,49,47$.

Choose and calculate an appropriate measure of central tendency (mean, mode or median) to summarise these salaries. Explain briefly why the other measures are not suitable.

2 (a) The random variable X is normally distributed. The mean is twice the standard deviation. It is given that $\mathrm{P}(X>5.2)=0.9$. Find the standard deviation.
(b) A normal distribution has mean μ and standard deviation σ. If 800 observations are taken from this distribution, how many would you expect to be between $\mu-\sigma$ and $\mu+\sigma$?

3 Each father in a random sample of fathers was asked how old he was when his first child was born. The following histogram represents the information.

(i) What is the modal age group?
(ii) How many fathers were between 25 and 30 years old when their first child was born?
(iii) How many fathers were in the sample?
(iv) Find the probability that a father, chosen at random from the group, was between 25 and 30 years old when his first child was born, given that he was older than 25 years.

4 (i) Find the number of different ways that a set of 10 different mugs can be shared between Lucy and Monica if each receives an odd number of mugs.
(ii) Another set consists of 6 plastic mugs each of a different design and 3 china mugs each of a different design. Find in how many ways these 9 mugs can be arranged in a row if the china mugs are all separated from each other.
(iii) Another set consists of 3 identical red mugs, 4 identical blue mugs and 7 identical yellow mugs. These 14 mugs are placed in a row. Find how many different arrangements of the colours are possible if the red mugs are kept together.

5 (a) Find how many numbers between 5000 and 6000 can be formed from the digits 1, 2, 3, 4, 5 and 6
(i) if no digits are repeated,
(ii) if repeated digits are allowed.
(b) Find the number of ways of choosing a school team of 5 pupils from 6 boys and 8 girls
(i) if there are more girls than boys in the team,
(ii) if three of the boys are cousins and are either all in the team or all not in the team.

6 In the holidays Martin spends 25% of the day playing computer games. Martin's friend phones him once a day at a randomly chosen time.
(i) Find the probability that, in one holiday period of 8 days, there are exactly 2 days on which Martin is playing computer games when his friend phones.
(ii) Another holiday period lasts for 12 days. State with a reason whether it is appropriate to use a normal approximation to find the probability that there are fewer than 7 days on which Martin is playing computer games when his friend phones.
(iii) Find the probability that there are at least 13 days of a 40 -day holiday period on which Martin is playing computer games when his friend phones.

7 The probability that Sue completes a Sudoku puzzle correctly is 0.75 .
(i) Sue attempts n Sudoku puzzles. Find the least value of n for which the probability that she completes all n puzzles correctly is less than 0.06 .

Sue attempts 14 Sudoku puzzles every month. The number that she completes successfully is denoted by X.
(ii) Find the value of X that has the highest probability. You may assume that this value is one of the two values closest to the mean of X.
(iii) Find the probability that in exactly 3 of the next 5 months Sue completes more than 11 Sudoku puzzles correctly.

