Mock Exam 1

MATHEMATICS
9709
Paper 3 Pure Mathematics 3
1 hour 50 minutes

You must answer on the question paper.
You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75 .
- The number of marks for each question or part question is shown in brackets [].

PURE MATHEMATICS

Mensuration

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$
Volume of cone or pyramid $=\frac{1}{3} \times$ base area \times height
Area of curved surface of cone $=\pi r \times$ slant height
Arc length of circle $=r \theta \quad(\theta$ in radians $)$
Area of sector of circle $=\frac{1}{2} r^{2} \theta \quad(\theta$ in radians $)$

Algebra

For the quadratic equation $a x^{2}+b x+c=0$:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

For an arithmetic series:

$$
u_{n}=a+(n-1) d, \quad S_{n}=\frac{1}{2} n(a+l)=\frac{1}{2} n\{2 a+(n-1) d\}
$$

For a geometric series:

$$
u_{n}=a r^{n-1}, \quad S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad(r \neq 1), \quad S_{\infty}=\frac{a}{1-r} \quad(|r|<1)
$$

Binomial series:
$(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\binom{n}{3} a^{n-3} b^{3}+\ldots+b^{n}$, where n is a positive integer and $\binom{n}{r}=\frac{n!}{r!(n-r)!}$
$(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots$, where n is rational and $|x|<1$

Trigonometry

$$
\begin{gathered}
\tan \theta \equiv \frac{\sin \theta}{\cos \theta} \\
\cos ^{2} \theta+\sin ^{2} \theta \equiv 1, \quad \cot ^{2} \theta+1 \equiv \operatorname{cosec}^{2} \theta \\
1+\tan ^{2} \theta \equiv \sec ^{2} \theta, \quad \sin (A \pm B) \equiv \sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) \equiv \cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B) \equiv \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A \equiv 2 \sin A \cos A \\
\cos 2 A \equiv \cos ^{2} A-\sin ^{2} A \equiv 2 \cos ^{2} A-1 \equiv 1-2 \sin ^{2} A \\
\tan 2 A \equiv \frac{2 \tan A}{1-\tan ^{2} A}
\end{gathered}
$$

Principal values:

$$
-\frac{1}{2} \pi \leqslant \sin ^{-1} x \leqslant \frac{1}{2} \pi, \quad 0 \leqslant \cos ^{-1} x \leqslant \pi, \quad-\frac{1}{2} \pi<\tan ^{-1} x<\frac{1}{2} \pi
$$

Differentiation

$\mathrm{f}(x)$	$\mathrm{f}^{\prime}(x)$
x^{n}	$n x^{n-1}$
$\ln x$	$\frac{1}{x}$
e^{x}	$e^{\text {a }}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\sec ^{2} x$
$\sec x$	$\sec x \tan x$
$\operatorname{cosec} x$	$-\operatorname{cosec} x \cot x$
$\cot x$	$-\operatorname{cosec}^{2} x$
$\tan ^{-1} x$	$\frac{1}{1+x^{2}}$
uv	$v \frac{\mathrm{~d} u}{\mathrm{~d} x}+u \frac{\mathrm{~d} v}{\mathrm{~d} x}$
\underline{u}	$v \frac{\mathrm{~d} u}{\mathrm{dx}}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}$
v	v^{2}

If $x=\mathrm{f}(t)$ and $y=\mathrm{g}(t)$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$

Integration

(Arbitrary constants are omitted; a denotes a positive constant.)

$$
\begin{aligned}
& f(x) \\
& x^{n} \quad \frac{x^{n+1}}{n+1} \\
& \frac{1}{x} \\
& \mathrm{e}^{x} \\
& \sin x \\
& \cos x \\
& \sec ^{2} x \\
& \frac{1}{x^{2}+a^{2}} \\
& \frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right) \\
& \frac{1}{x^{2}-a^{2}} \\
& \frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right| \\
& \frac{1}{a^{2}-x^{2}} \\
& \frac{1}{2 a} \ln \left|\frac{a+x}{a-x}\right| \\
& (x>a) \\
& (|x|<a) \\
& \int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x \\
& \int \frac{\mathrm{f}^{\prime}(x)}{\mathrm{f}(x)} \mathrm{d} x=\ln |\mathrm{f}(x)|
\end{aligned}
$$

Vectors

If $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ then

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=|\mathbf{a} \| \mathrm{b}| \cos \theta
$$

\qquad

2 Find the coefficient of x^{3} in the expansion of $(3-x)(1+3 x)^{\frac{1}{3}}$ in ascending powers of x.
\qquad

3 The polynomial $6 x^{3}+a x^{2}+b x-2$, where a and b are constants, is denoted by $\mathrm{p}(x)$. It is given that $(2 x+1)$ is a factor of $\mathrm{p}(x)$ and that when $\mathrm{p}(x)$ is divided by $(x+2)$ the remainder is -24 . Find the values of a and b.
\qquad

4 Show that $\int_{0}^{\frac{1}{4} \pi} x^{2} \cos 2 x d x=\frac{1}{32}\left(\pi^{2}-8\right)$.
\qquad

5 The parametric equations of a curve are

$$
x=2 t+\sin 2 t, \quad y=\ln (1-\cos 2 t)
$$

Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{cosec} 2 t$.
\qquad

6 The equation of a curve is $2 x^{2} y-x y^{2}=a^{3}$, where a is a positive constant. Show that there is only one point on the curve at which the tangent is parallel to the x-axis and find the y-coordinate of this point.
\qquad

7 (i) By sketching a suitable pair of graphs, show that the equation $\ln (x+2)=4 \mathrm{e}^{-x}$ has exactly one real root.
(ii) Show by calculation that this root lies between $x=1$ and $x=1.5$.
\qquad
(iii) Use the iterative formula $x_{n+1}=\ln \left(\frac{4}{\ln \left(x_{n}+2\right)}\right)$ to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
\qquad

8 The number of insects in a population t weeks after the start of observations is denoted by N. The population is decreasing at a rate proportional to $N \mathrm{e}^{-0.02 t}$. The variables N and t are treated as continuous, and it is given that when $t=0, N=1000$ and $\frac{\mathrm{d} N}{\mathrm{~d} t}=-10$.
(i) Show that N and t satisfy the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} N}{\mathrm{~d} t}=-0.01 \mathrm{e}^{-0.02 t} N \tag{1}
\end{equation*}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Solve the differential equation and find the value of t when $N=800$.
\qquad
(iii) State what happens to the value of N as t becomes large.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Throughout this question the use of a calculator is not permitted.

9 The complex number u is defined by

$$
u=\frac{4 \mathrm{i}}{1-(\sqrt{3}) \mathrm{i}} .
$$

(i) Express u in the form $x+\mathrm{i} y$, where x and y are real and exact.
\qquad
(iii) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z|<2$ and $|z-u|<|z|$.

10 With respect to the origin O, the position vectors of the points A, B and C are given by

$$
\overrightarrow{O A}=\left(\begin{array}{l}
0 \\
5 \\
2
\end{array}\right), \quad \overrightarrow{O B}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \quad \text { and } \quad \overrightarrow{O C}=\left(\begin{array}{r}
4 \\
-3 \\
-2
\end{array}\right) .
$$

The midpoint of $A C$ is M and the point N lies on $B C$, between B and C, and is such that $B N=2 N C$.
(a) Find the position vectors of M and N.
\qquad
(b) Find a vector equation for the line through M and N.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Find the position vector of the point Q where the line through M and N intersects the line through A and B.
\qquad

The diagram shows the curve $y=\sin 3 x \cos x$ for $0 \leqslant x \leqslant \frac{1}{2} \pi$ and its minimum point M. The shaded region R is bounded by the curve and the x-axis.
(i) By expanding $\sin (3 x+x)$ and $\sin (3 x-x)$ show that

$$
\sin 3 x \cos x=\frac{1}{2}(\sin 4 x+\sin 2 x)
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Using the result of part (i) and showing all necessary working, find the exact area of the region R.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Using the result of part (i), express $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of $\cos 2 x$ and hence find the x-coordinate of M, giving your answer correct to 2 decimal places.
\qquad

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
\qquad

