Mock Exam 1

MATHEMATICS
9709
Paper 4 Mechanics
1 hour 15 minutes
MARK SCHEME
Maximum Mark: 55

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2022 series for most
Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.
$[\mathrm{s}=(0+0.5) / 2 \times 7]$
$\mathrm{s}=1.75 \mathrm{~m}$
PE gain $=160 \mathrm{~g} \times 1.75$
KE gain $=1 / 2160 \times 0.5^{2}$
[WD = $2800+20$]
Work done is 2820 J

SR (max 4/6) for candidates who use a non-energy method
$[\mathrm{s}=(0+0.5) / 2 \times 7]$
$\mathrm{s}=1.75 \mathrm{~m}$
M1
Al
$[\mathrm{a}=1 / 14, \mathrm{~T}=160 \mathrm{~g}+160 / 14, \mathrm{WD}=1611.4 \ldots \mathrm{x} 1.75]$
M1

For using $(u+v) / 2=s / t$
A1 May be implied
B1ft
B1
M1
A1 [6]

For using WD $=$ PE gain + KE gain

M1

M1
\qquad

(i) $\quad T_{\mathrm{BM}}=T_{\mathrm{AM}}$ or $T_{\mathrm{BM}} \cos 30^{\circ}=T_{\mathrm{AM}} \cos 30^{\circ}$

For resolving forces at M horizontally $\left(2 T \sin 30^{\circ}=5\right)$
or for using the sine rule in the triangle of forces $\left(T \div \sin 60^{\circ}=5 \div \sin 60^{\circ}\right)$
or for using Lami's theorem $\left(T \div \sin 120^{\circ}=5 \div \sin 120^{\circ}\right)$
Tension is 5 N
A.G. A1
(ii) For resolving forces on B horizontally $\left(N=T \sin 30^{\circ}\right)$ or from symmetry ($N=5 / 2$) or for using Lami's theorem $\left(N \div \sin 150^{\circ}=5 \div \sin 90^{\circ}\right)$

For resolving forces on B vertically (3 terms needed) or for using Lami's theorem
$0.2 \times 10+F=T \cos 30^{\circ}$ or $(0.2 g+F) \div \sin 120^{\circ}=T \div \sin 90^{\circ}$

For using $F=\mu R$
$(2.33=2.5 \mu) \quad$ M1
Coefficient is 0.932 A1
(iii) $(0.2+m) g-2.33=5 \cos 30^{\circ}$ or $m g=2(2.33)$

(i)	For applying Newton's $2^{\text {nd }}$ $\left(m_{1}+m_{2}\right) a=\left(m_{2}-m_{1}\right) g$	or B or for using	M1	
	$0.15 a=T-0.15 \mathrm{~g}$		Al	
	$0.25 a=0.25 \mathrm{~g}-\mathrm{T}$		A1	
Alternative for the above 2 A marks:$(0.15+0.25) a=(0.25-0.15) g$				
	Acceleration is $2.5 \mathrm{~ms}^{-2}$ (ft only for 0.25 following the absence of g) (2.45 from $\mathrm{g}=9.8$ or $\mathrm{g}=9.81$)		Alft	4
(ii)	$v=5 \quad$ ft for $2 \times$ ans(i) (4.9 from $g=9.8$ and $4.90(5)$ from $g=9.81$)		Bl ft	
	For using $v=u+a t$ to find time up or time down or total time up and down; acceleration must be $\pm g$		M	
	$t=2 \times \frac{5}{10}$ or $-5=5-10 t$		Alt	
	Slack for 1 s		Al	4
(iii)		For 2 line segments representing motion with the string taut	B1	
		For the line segment representing motion of A with the string slack	B1	
		For the line segment $v=0$ representing B stationary with the string slack	B1	3

(i)	PE gain $=m g\left(2.5 \sin 60^{\circ}\right)$	B1	
	For using KE $=1 / 2 m v^{2}$	M1	
	For using the principle of conservation of energy $\left(1 / 2 m 8^{2}-1 / 2 m v^{2}=m g\left(2.5 \sin 60^{\circ}\right)\right)$	M1	
	Alternative for the above 3 marks: For using Newton's Second Law or stating $a=-g \sin 60^{\circ}$ $a=-8.66$ (may be implied) For using $v^{2}=u^{2}+2$ as $\quad\left(v^{2}=64-2 \times 8.66 \times 2.5\right)$	M1* A1 M1dep*	
	$\begin{aligned} & \text { Speed is } 4.55 \mathrm{~ms}^{-1} \\ & \text { Accept } 4.64 \text { from } 9.8 \text { or } 9.81 \end{aligned}$	A1	4
(ii)	For using $1 / 2 m u^{2}(>) m g h_{\max } \quad\left(1 / 28^{2}>10 h_{\max }\right)$	M1	
	For obtaining 3.2m A.G.	A1	2
(iii)	Energy is conserved or absence of friction or curve $B C$ is smooth (or equivalent) and B and C are at the same height or the PE is the same at A and B (or equivalent)	B1	1

