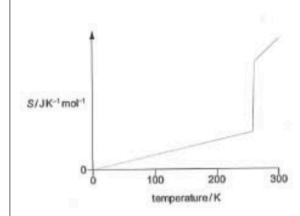


Mock Exam 1

CHEMISTRY	9701
Paper 4 A Level Structured Questions	
MARK SCHEME	
Maximum Mark: 110	
Published	

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.


Cambridge International will not enter in to discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Q1.

Question	Answer	Marks
3(a)(i)	(+193 + 242 + 590 + 1150 + (2 × –349)) [1]	2
	answer (+)1477 [1]	
3(a)(ii)	(–795 – 83 – 1477) [1] –2355 [1]	2
3(a)(iii)	(-2355 -(2 × -364)) [1] -1627 [1]	2
3(a)(iv)	Z–Y or X–W [1]	1
3(a)(v)	less (exothermic) and both ions (in $CaCl_2$) are larger [1]	1
3(b)(i)	soluble barium salt AND soluble sulfate [1]	1
3(b)(ii)	less soluble (down the group) [1] ΔH_{lat} and ΔH_{hyd} both decrease down the group [1] ΔH_{hyd} decreases more / faster / is dominant factor [1] ΔH_{sol} gets less exo / more endo [1]	4

C

[1] for each correct tick

M1 continuous increase in S from 0-300 K (excluding m.p.) [1]

M2 steep vertical increase in S ONLY at the m.p. AND continuous increase in S after m.p. [1]

d

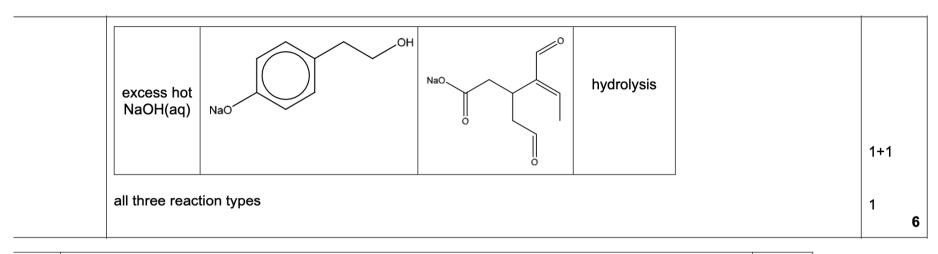
	negative $\Delta \mathcal{S}^{\Theta}$	positive $\Delta \mathcal{S}^{\Theta}$
solid dissolving in water		✓
water boiling to steam		✓

е

$$\Delta H^{\text{e}} = (2 \times \text{C=O}) + (3 \times \text{H-H}) - (3 \times \text{C-H}) - (\text{C-O}) - (3\text{xO-H})$$

$$\Delta H^{\text{e}} = (2 \times 805) + (3 \times 436) - (3 \times 410) - (1 \times 360) - (3 \times 460) [1]$$

$$\Delta H^{\text{e}} = 1610 + 1308 - 1230 - 360 - 1380 = -52 \text{ (kJ mol}^{-1}) [1] \text{ ecf correct answer scores [2]}$$


2

	1		3
	identity	or value	
V	nitrogen or	chlorine	
Х	NO/NO ₂	ClO ₂ /ClO ₃	
m	2, 3	1,2,3, or 4	
W	sul	lfur	
Y	SO ₂ o	or SO ₃	
n	4,	3	
descending the ground $M2$, $M3$ any two from ΔH_{latt} decreases/be ΔH_{hyd} decreases/be	p ΔH _{sol} becomes more er n: comes more endothermic comes more endothermic	/becomes less exothern	
	M W Y n M1: (white precipitate descending the ground M2, M3 any two from ΔH _{latt} decreases/bed ΔH _{hyd} decreases/bed	X NO/NO ₂ m 2, 3 W SO ₂ of the second of the group ΔH _{sol} becomes more endothermic ΔH _{latt} decreases/becomes more endothermic	X NO/NO ₂ ClO ₂ /ClO ₃ m 2, 3 1,2,3, or 4 W sulfur Y SO ₂ or SO ₃ n 4, 3 M1: (white precipitate is BaSO ₄) descending the group ΔH _{sol} becomes more endothermic/positive; M2, M3 any two from: ΔH _{latt} decreases/becomes more endothermic/becomes less exotherm ΔH _{hyd} decreases/becomes more endothermic/becomes less exotherm

3	6(a)	HO *		1	
-	6(b)(i)	ratio of the concentration of a solute in the (two immiscible) solvents/liquids at equilibrium	1 1	2	
	6(b)(ii)	$K_{\text{partition}} = (0.06/40)/(0.25-0.06/10)$ or reversed ratio: $K_{\text{partition}} = (0.25-0.06/10)/(0.06/40)$ $K_{\text{partition}} = 0.079$ (0.0789) $K_{\text{partition}} = 12.7/13.0$	1	2	

i(c)

reagent	structure of product(s)	type of reaction	
excess Br₂(aq)	addition of bromine to alkene 2×Br substituted in phenol at positions 2 and 6	(electrophilic) substitution or (electrophilic) addition	
NaBH₄	НО	reduction (allow nucleophilic addition)	

(d)	mixture of (two) optical/stereo isomers formed	1 1	
	Total:	12	

4a

(an element) forming one or more (stable) ions or compounds or oxidation states with partially filled/incomplete d orbitals

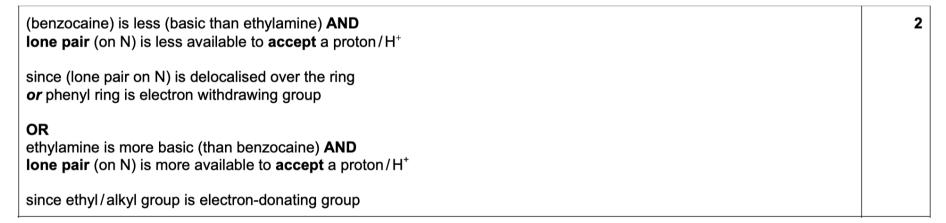
b	-(b)(i)	A $Co(OH)_2$ OR $Co(H_2O)_4(OH)_2$ B $[CoCl_4]^{2^-}$ C $[Co(NH_3)_6]^{2^+}$ OR $[Co(NH_3)_6]^{3^+}$ two correct = 1 mark three correct = 2 marks		
	(b)(ii)	[Co(H ₂ O) ₆] ²⁺ pink solution of B blue solution of C brown/yellow/orange	2	

С

	vo correct = 1 mark	
		2
)(i)	Kstab = [(Cu(NH ₃) ₄) ²⁺] / [(Cu(H ₂ O) ₆) ²⁺] [NH ₃] ⁴ [1]	1
(ii)	deep / dark / royal blue [1]	1

d $[Cu(NH_3)_4]^{2+} + 2H_2O \rightarrow Cu(OH)_2 + 2NH_4^+ + 2NH_3$ [1] 1 **OR** $[Cu(NH_3)_4]^{2+} + 2H_2O \rightarrow Cu(OH)_2 + 2H^+ + 4NH_3$ $Cu(OH)_2 + 4HCl \rightarrow [CuCl_4]^{2-} + 2H_2O + 2H^+$ 2 е **OR** Cu(OH)₂ + $4Cl^- + 2H^+ \rightarrow [CuCl_4]^{2-} + 2H_2O$ [CuC4]²⁻ complex including charge [1] rest of equation fully correct [1] f 2 Υ Ζ colour of complex yellow blue / pale blue geometry of complex tetrahedral octahedral formula of complex $[Cu(H_2O)_6]^{2+}$ one mark for any three cells [1] two marks for all five cells g (i) Circles round both N atoms and all four O-1 (ii) 2 **M1:** (d–d) energy gap $/\Delta E$ is different M2: different frequency / wavelength (of light) absorbed (iii) ligand exchange / substitution / displacement / replacement 1

(g)(i)	part mark 1: plot a graph of concentration of [H ₂] against time	3
	part mark 2: constant half-life (showing it is 1st order)	
	part mark 3: draw tangent AND determine gradient (on conc vs time graph) or draw two tangents to determine two gradients (rate) (on conc vs time graph)	
	part mark 4: if conc 1 (at time 1) / conc 2 (at time 2) = gradient 1 / gradient 2	
	part mark 5: plot a graph of rate against concentration of [H ₂]	
	part mark 6: gives a straight-line through the origin of graph for part mark 5	
	2 parts = 1 mark 3 parts = 2 marks 4 parts = 3 marks	
(g)(ii)	[ICI] doesn't change or [ICI] only changes slightly	1
(h)	provides an alternative route of lower activation energy / E_a or to lower E_a and more molecules with $E\geqslant E_a$	1
(a)(i)	10	1
(a)(ii)	120	1
(b)(i)	correct acid chloride	1
(b)(ii)	NH ₃ or ammonia	1
(c)	M1: (C ₅ NH ₄)COOH or (C ₅ NH ₅)+COOH	2
	M2 : (C₅NH₄)COO⁻(Na⁺) or (C₅NH₄)COONa	


(d)(i)	LiA <i>l</i> H ₄	1
(d)(ii)	M1: most basic: X > phenylamine > nicotinamide :least basic	3
	M2: LP in X cannot be delocalised	
	M3: LP in phenylamine <u>delocalised</u> over the benzene ring or LP in amide <u>delocalised</u> (more effectively) by C=O	
(e)	M1 : $M + 1/M = (1.1 \times ?)/100$	2
	M2 : Ans 5.28	
	Award 2 marks for correct answer	

|--|

8a

)(i)	4-aminobenzoic acid		
(ii)	step 1 Sn + HCl[1] concentrated/reflux/heat [1] step 2 CH ₃ COCl[1] step 3 KMnO ₄ /manganate(<u>VII</u>)/MnO ₄ ⁻ (acidified/alkaline) and heat [1] step 4 aqueous HCl and heat [1] step 5 ethanol, H ₂ SO ₄ , concentrated/reflux/heat [1]	6	

b

)(i)	7 peaks					
)(ii)	$CDC\mathit{l}_3$ will produce no signal in the spectrum $or\ CHC\mathit{l}_3$ would produce a signal/would be detected					
(iii)	δ/ppm	group responsible for the peak	number of H atoms responsible for the peak	splitting pattern	4	
	1.2	CH ₍₃₎	3	triplet		
	3.5	CH ₍₂₎ O	2	quartet		
	5.5	NH ₂	2	singlet (broad)		
	7.1–7.4	H attached to aromatic/benzene ring	4	multiplet		
(iv)	neighbouring / adjacent carbon atom has two protons / H (attached to it) or there is an adjacent CH ₂ (O) group					
)(v)	peak at 5.5/NH ₂ peak will disappear and NH ₂ /protons exchange/swap with deuterium					

NaNO ₂ + HC <i>l</i> or HNO ₂	1
$CO_2C_2H_5$ $CO_2C_2H_5$ R R R R R R R R	
structure of diazonium salt R	1
structure of azo dye S	1