Mock Exam 1

MATHEMATICS

9709
Paper 1 Pure Mathematics 1
1 hour 50 minutes

You must answer on the question paper.
You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 72 .
- The number of marks for each question or part question is shown in brackets [].

1. On the axes below, sketch the graph of $y=2 \cos 3 x-1$ for $-90^{\circ} \leqslant x \leqslant 90^{\circ}$.

2.

(i) Express $5 x^{2}-15 x+1$ in the form $p(x+q)^{2}+r$, where p, q and r are constants.
(ii) Hence state the least value of $x^{2}-3 x+0.2$ and the value of x at which this occurs.
3.

The functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}(x)=5 x-2 \quad \text { for } x>1, \\
& \mathrm{~g}(x)=4 x^{2}-9 \quad \text { for } x>0 .
\end{aligned}
$$

(i) State the range of g .
(ii) Find the domain of gf.
(iii) Showing all your working, find the exact solutions of $\operatorname{gf}(x)=4$.
4.
(a) Find the first 3 terms in the expansion of $\left(4-\frac{x}{16}\right)^{6}$ in ascending powers of x. Give each term in its simplest form.
(b) Hence find the term independent of x in the expansion of $\left(4-\frac{x}{16}\right)^{6}\left(x-\frac{1}{x}\right)^{2}$.
5.

A geometric progression has a second term of $27 p^{2}$ and a fifth term of p^{5}. The common ratio, r, is such that $0<r<1$.
(i) Find r in terms of p.
(ii) Hence find, in terms of p, the sum to infinity of the progression.
(iii) Given that the sum to infinity is 81 , find the value of p.
6.

The points $\mathrm{A}(0,2), \mathrm{B}(7,9)$ and $\mathrm{C}(6,10)$ lie on the circumference of a circle, as shown

(i) Find the length of AC.

Prove that triangle ABC is right-angled at B .
(ii) Hence show that the centre of the circle is $(3,6)$ and its radius is 5 .

Find the equation of the circle.
(a) Solve $6 \sin ^{2} x-13 \cos x=1$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
(b) (i) Show that, for $-\frac{\pi}{2}<y<\frac{\pi}{2}, \frac{4 \tan y}{\sqrt{1+\tan ^{2} y}}$ can be written in the form $a \sin y$, where a is an
(ii) Hence solve $\frac{4 \tan y}{\sqrt{1+\tan ^{2} y}}+3=0$ for $-\frac{\pi}{2}<y<\frac{\pi}{2}$ radians.
8.

A curve is such that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2(3 x-1)^{-\frac{2}{3}}$. Given that the curve has a gradient of 6 at the point $(3,11)$, find the equation of the curve.
9.

In this question all lengths are in centimetres and all angles are in radians.

The diagram shows the rectangle $A D E F$, where $A F=D E=r$. The points B and C lie on $A D$ such that $A B=C D=r$. The curve $B C$ is an arc of the circle, centre O, radius r and has a length of $1.5 r$.
(a) Show that the perimeter of the shaded region is $(7.5+2 \sin 0.75) r$.
(b) Find the area of the shaded region, giving your answer in the form $k r^{2}$, where k is a constant correct to 2 decimal places.
10.

The diagram shows a sector $O P Q$ of the circle centre O, radius $3 r \mathrm{~cm}$. The points S and R lie on $O P$ and $O Q$ respectively such that $O R S$ is a sector of the circle centre O, radius $2 r \mathrm{~cm}$. The angle $P O Q=\theta$ radians. The perimeter of the shaded region $P Q R S$ is 100 cm .
(i) Find θ in terms of r.
(ii) Hence show that the area, $A \mathrm{~cm}^{2}$, of the shaded region $P Q R S$ is given by $A=50 r-r^{2}$.
(iii) Given that r can vary and that A has a maximum value, find this value of A.
(iv) Given that A is increasing at the rate of $3 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ when $r=10$, find the corresponding rate of change of r.
11.

The diagram shows part of the curve $y=x+\frac{6}{(3 x+2)^{2}}$ and the line $x=2$.
(i) Find, correct to 2 decimal places, the coordinates of the stationary point.
(ii) Find the area of the shaded region, showing all your working.

