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TRIG SKETCH
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On the axes below, sketch the graph of y =2cos3x—1 for —90° < x < 90°.
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GLUADRATICS
(i) Express 5x*—15x+1 in the form p(x+q>2+r,where p, q and r are constants.
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(i) Hence state the least value of x> —3x+0.2 and the value of x at which this occurs.
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Funcvions

The functions f and g are defined by
f(x) =5x—2 forx>1,
g(x)=4x*—9 for x > 0.

a n
(i) State the range of g. agx) = Ux -9 [1]
©®. X >0 y
R J®) > -9
-9
= D’F + X >
(ii) Find the domain of gf. [1]
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(iii) Showing all your working, find the exact solutions of gf(x) = 4. [3]
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4. DiNomiAL EXP .

6
(a) Find the first 3 terms 1n the expansion of (4 — lx_6) n ascending powers of x. Give each term in
its simplest form. [3]
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(b) Hence find the term independent of x in the expansion of (4 = E) (x— ;) i [3]
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A geometric progression has a second term of 27p? and a fifth term of p°. The common ratio, 7, is
such that 0 <r < L.

T, = L’l‘?"
(i) Find 7 in terms of p.
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(ii) Hence find, in terms of p, the sum to infinity of the progression

[3]
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(iii) Given that the sum to infinity 1s 81, find the value of p 3 7 [2]
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The points A(0,2), B(7,9) and C(6, 10) lie on the circumference of a circle, as shown
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(i) Find the length of AC. v~ = W 3
s
Prove that triangle ABC is right-angled at B. I [3]
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(i) Hence show that the centre of the circle is (3, 6) and its radius is 5.

Find the equation of the circle.

[3]
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(a) Solve 6sin’x—13cosx =1 for 0°<x < 360°.
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(b) (i) Show that, for —Z <y <X,
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(i) Hence solve \/% +3=0 for —% <y< % radians.
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8 TNTEQATION

. d’ -2 : .
A curve is such that ;)2} = 2(3x—1) 3. Given that the curve has a gradient of 6 at the point (3, 11), find

the equation of the curve. [8]
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9. ™M

In this question all lengths are in centimetres and all angles are in radians.

A\

E
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The diagram shows the rectangle ADEF, where AF = DE = r. The points B and C lie on AD such that
AB = CD = r. The curve BC 1s an arc of the circle, centre O, radius 7 and has a length of 1.5r.

(a) Show that the perimeter of the shaded region is (7.5+2sin0.75)r. [4]
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(b) Find the arca of the shaded region, giving your answer in the form kr*, where k is a constant
correct to 2 decimal places. [4]
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10.

The diagram shows a sector OPQ of the circle centre O, radius 37cm. The points S and R lie on OP and OQ

respectively such that ORS is a sector of the circle centre O, radius 2rcm. The angle POQ = 6 radians. The
perimeter of the shaded region PORS is 100 cm.

(i) Find 6 in terms of 7.
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(i) Hence show that the area, 4 cm?, of the shaded region PORS is given by A = 50r— . (2]
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(iii) Given that 7 can vary and that 4 has a maximum value, find this value of 4. [2]
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(iv) Given that 4 is increasing at the rate of 3cm?s~! when » = 10, find the corresponding rate of change
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11. ST-PINTS «+ ARBA Undev

3roph.
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> and the line x = 2.

The diagram shows part of the curve y =x+ 6
(B3x+2)°

(i) Find, correct to 2 decimal places, the coordinates of the stationary point.
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(ii) Find the area of the shaded region, showing all your working.
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