

Mock Exam 1

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		
CHEMISTRY				970 ⁻
Paper 4 A Level	Structured Questions		2 hours	10 minute
You must answe	er on the question paper.			
No additional m	aterials are needed.			
INCTRUCTION	10			

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is
- The number of marks for each question or part question is shown in brackets 110
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

1

more steps.

(a) The energy cycle shown can be used, along with suitable data, to calculate the enthalpy change of hydration of Ca²⁺(g).
Each arrow indicates a transformation, W, X, Y and Z. Each transformation consists of one or

The following data and data from the Data Booklet should be used.

electron affinity of Cl(g) = $-349 \, \mathrm{kJ \, mol^{-1}}$ enthalpy change of atomisation of Ca(s) = $+193 \, \mathrm{kJ \, mol^{-1}}$ enthalpy change of formation of $CaCl_2(s)$ = $-795 \, \mathrm{kJ \, mol^{-1}}$ enthalpy change of solution of $CaCl_2(s)$ = $-83 \, \mathrm{kJ \, mol^{-1}}$ enthalpy change of hydration of $Cl^-(g)$ = $-364 \, \mathrm{kJ \, mol^{-1}}$

(i) Calculate the value of the enthalpy change corresponding to transformation W. Show your working.

enthalpy change $\mathbf{W} = \dots k J \, \text{mol}^{-1}$ [2]

(ii) Use your answer to (a)(i) and other data to calculate the value of the enthalpy change corresponding to transformation **Z**.

enthalpy change **Z** = kJ mol⁻¹ [2]

(iii)	Use your answer to (a)(ii) to calculate the enthalpy change of hydration of Ca ²⁺ (g).
	enthalpy change of hydration of $Ca^{2+}(g) = \dots kJ mol^{-1}$ [2]
(iv)	Write an expression, in terms of W , X , Y and/or Z , to show how the enthalpy changes of two of the transformations can be used to calculate the lattice energy of $CaCl_2(s)$.
	lattice energy of $CaCl_2(s) = $ [1]
(v)	State whether the lattice energy of $CaCl_2(s)$ is more or less exothermic than the lattice energy of $MgF_2(s)$.
	Explain your answer.
	[1]
(b) The	e sulfates of the Group 2 elements vary in solubility down Group 2.
(i)	Give the names of two solutions that could be mixed to form barium sulfate. [1]
(ii)	State and explain how the solubilities of the sulfates of the Group 2 elements vary down Group 2.
	[4]

Entropy is a measure of the disorder of a system. (c) Assume the entropy, S, for H_2O is zero at 0 K. Sketch a graph on the axes to show how the entropy changes for H₂O between 0 K and 300 K. $S/JK^{-1}mol^{-1}$ 300 200 temperature/K [2] Place **one tick** (\checkmark) in **each row** of the table to show the sign of the entropy changes, $\triangle S$. (d) ΔS is negative ΔS is positive solid dissolving in water water boiling to steam [1] The equation for a reaction that produces methanol is shown. $CO_2(g) + 3H_2(g) \rightarrow CH_3OH(g) + H_2O(g)$ (e) Use relevant bond energies from the Data Booklet to calculate the enthalpy change, ΔH , for this gas phase reaction. $\Delta H = \text{kJ mol}^{-1} [2]$

[Total: 18]

Two elements, **V** and **W**, are in adjacent groups in the Periodic Table.

 ${f V}$ reacts with oxygen to form an acidic gas, ${f X}$. ${f V}$ forms an anion with formula ${f VO}_m^-$.

 ${\bf W}$ reacts with oxygen to form an acidic gas, ${\bf Y}$. ${\bf W}$ forms an anion with formula ${\bf WO_n}^{2-}$.

A solution of WO_n^{2-} forms a white precipitate with $Ba^{2+}(aq)$ but shows no visible reaction with $Mg^{2+}(aq)$.

(a) Complete the table below.

	identity or value
٧	
Х	
m	
W	
Υ	
n	

[3]

(b)	By referring to enthalpy changes, explain why WO_n^{2-} forms a white precipitate with Ba ²⁺ (aq) but shows no visible reaction with Mg^{2+} .
	[3]
	[Total: 6]

Oleocanthal, \mathbf{Q} , is a natural compound found in olive oil. It has antioxidant and anti-inflammatory properties and is thought to have a protective effect against Alzheimer's disease.

(a) Q shows optical and cis-trans isomerism.

On the structure of $\bf Q$ above, **circle** the functional group that shows cis-trans isomerism and indicate with an **asterisk** (*) the chiral carbon atom. [1]

(b) Q can be isolated from olive oil by partitioning between two solvents.

(i)	Explain what is meant by the term <i>partition coefficient</i> .

(ii) When 40.0 cm³ of hexane was shaken with 10.0 cm³ of a solution containing 0.25 g of **Q** in 10.0 cm³ of methanol, it was found that 0.060 g of **Q** was extracted into the hexane.

Calculate the partition coefficient, $K_{\mathrm{partition}}$, of ${\bf Q}$ between hexane and methanol.

K				ro1
ĸ	=			1/1

reagent		structure	of produc	ct(s)		t	ype of reacti	on
excess Br ₂ (aq)								
NaBH₄								
xcess hot NaOH(aq)								
oil, it v	a sample of Q was found that t	he therapeution	a labora c activity	tory was of the sy	compare nthetic sa	ed to a natu ample was l	ral sample fr ower.	om (
Sugge	est a reason for	this.						
							[7	Total

(a)	Col	palt is a transition element that forms complex ions with oxidation states +2 and +3.	
	Exp	plain what is meant by the term transition element.	
			[1]
(b)	The	e following scheme shows some reactions of $[Co(H_2O)_6]^{2+}$.	
		$[Co(H_2O)_6]^{2+}$	
		$OH^{-}(aq)$ excess $NH_{3}(aq)$ $Cl^{-}(aq)$	
		precipitate A solution of B solution of C	
	(i)	State the formula of each of the following.	
		A	
		В	
		C	[0]
	(ii)	State the colour of the following solutions.	[2]
		[Co(H ₂ O) ₆] ²⁺	
		solution of B	
		solution of C	

[2]

		tion is made by dissons the copper comple		xcess of aqueous ammonia.	This solution
(c)	(i)	Write an expression	n for the $K_{\rm stab}$ of $[{ m Cu}({ m NH_3})_4]^{2+}$		
		K _{stab} =			
	(ii)	State the colour of	the solution of $[Cu(NH_3)_4]^{2+}$.		[1]
					[1]
	remain		ne forms NH ₃ gas. The colo	upboard so that $\mathrm{NH_3}$ is release ur of the solution changes; a	
		ole of Cu(OH) ₂ is add ed copper complex, Y		loric acid. A reaction takes pl	ace forming a
	A sam			A reaction takes place formin	ng a coloured
	[Cu(NF	$[H_3)_4]^{2+}$, Y and Z are dif	ferent colours.		
(d)		iggest an equation fo [Cu(NH ₃) ₄] ²⁺ is heated		⁺ to form Cu(OH)₂ as the aqu	leous solution
					[1]
(e)	Su	iggest an equation for		n concentrated hydrochloric ac	
					[2]
(f)		omplete the table with mula of complex Z .	the colour and geometry o	f complex Y and the colour,	geometry and
			Υ	Z	
		colour of complex			
	ge	eometry of complex			
	f	ormula of complex			
					[2]

(g)

Ed	ds ^{4–} and edta ^{4–} are polydentate ligands tha	at form octahedral complexes with Fe³+(aq).	
	edds ⁴⁻	edta ⁴⁻	
	H CO₂⁻	CO ₂ -	
	-0,C, N, ∧ \	$N CO_2^-$	
	N CO ₂ -	N, V	
	CO ₂ -	CO ₂ -	
Th	e formulae of the complexes are [Fe(edds)] ⁻ and [Fe(edta)] ⁻ respectively.	
(i)	On the diagram of edds ⁴⁻ , circle each ato	m that forms a bond to the Fe³+ ion in [Fe(edds	s)] [–] . [1]
(ii)	[Fe(edds)] ⁻ is red and [Fe(edta)] ⁻ is yello	W.	
	Explain why the two complexes have diff	ferent colours.	
			[2]
(iii)	When edds ⁴⁻ (aq) is added to Fe ³⁺ (aq), th	e following reaction occurs.	
	$[Fe(H_2O)_6]^{3+}(aq) + edds^{4-}(aq) \rightleftharpoons$	≥ [Fe(edds)] ⁻ (aq) + 6H ₂ O(l)	
	State the type of reaction that occurs.		
			[1]
			ניו

[Total: 16]

lodine monochloride, IC l, is a yellow-brown gas. It reacts with hydrogen gas under certain conditions as shown.

$$2 \text{IC} \textit{l}(g) \ + \ \text{H}_{\textit{2}}(g) \ \rightarrow \ 2 \text{HC} \textit{l}(g) \ + \ \text{I}_{\textit{2}}(g)$$

Experiments are performed using different starting concentrations of ICl and H_2 . The initial rate of each reaction is measured. The following results are obtained.

experiment	[IC1]/moldm ⁻³	[H ₂]/moldm ⁻³	relative rate of reaction
1	4.00 × 10 ⁻³	4.00 × 10 ⁻³	1.00
2	4.00 × 10 ⁻³	7.00×10^{-3}	1.75
3	4.00 × 10 ⁻³	1.00 × 10 ⁻²	2.50
4	5.00 × 10 ⁻³	8.00 × 10 ⁻³	2.50
5	7.00 × 10 ⁻³	8.00 × 10 ⁻³	3.50

(a)	Identify a change, taking place in the reaction mixture, that would enable measurements of the rate of this reaction to be made.
	[1]
(b)	Use the data in the table to show that the reaction is first order with respect to $H_2(g)$.
	[1]
(c)	Use the data in the table to show that the reaction is first order with respect to $ICl(g)$.
. ,	
	[1]
(d)	Complete the rate equation for the reaction between $ICl(g)$ and $H_2(g)$.
(4)	Complete the fate equation for the reastion between 100 (g) and 1/2(g).
	241
	rate =[1]

(e)	Use experiment 3 to calculate a numerical value for the rate constant, k.
	k =[1]
(f)	The reaction 2IC $l(g)$ + H $_2(g) \rightarrow$ 2HC $l(g)$ + I $_2(g)$ is first order with respect to IC $l(g)$ and first order with respect to H $_2(g)$.
	Suggest a mechanism for this reaction. You should assume
	 the mechanism has two steps, the first step is much slower than the second step.
	first step →
	second step →
(g)	An alternative method is used to show that the reaction is first order with respect to $H_2(g)$. This method uses a large excess of $ICl(g)$ and measures how the concentration of $H_2(g)$ varies with time.
	(i) Describe two ways of using these results to show the reaction is first order with respect to $H_2(g)$ concentration.
	[3]
	(ii) Explain the reason for using a large excess of $ICl(g)$.
	[1]
(h)	A chemical reaction may be speeded up by the presence of a catalyst.
	Explain why a catalyst increases the rate of a chemical reaction.
	[1]
	[Total: 12]

The structure of nicotinamide is shown.
nicotinamide
NH ₂
(a) The nitrogen atom in the six-membered ring has one electron in an unhybridised p-orbital. This electron becomes delocalised, becoming part of a single delocalised system of electrons. This delocalised system also includes:
 electrons from the carbon atoms in the six-membered ring the two electrons in the π bond of the C=O group the two electrons in the lone pair on the nitrogen atom of the amide group.
(i) State the number of delocalised electrons in one nicotinamide molecule.
[1]
(ii) Predict the H–N–H bond angle in the NH ₂ group in nicotinamide.
[1]
(b) Nicotinamide can be synthesised from nicotinic acid.
The synthesis involves two steps.
nicotinic acid E nicotinamide
OH step 1 NH ₂

(i) Draw the structural formula of E in the box.

(ii) Give the name or formula of a suitable reagent for step 2.

[1]

(c) Nicotinamide reacts separately with aqueous acid and aqueous alkali. The six-membered ring remains unchanged in these reactions. Complete the reaction scheme below to give the structural formula of the organic product of each reaction. HCl(aq) reflux [2] (d) Nicotinamide can be reduced to compound X. X (i) Identify a suitable reducing agent for this reaction.[1] Predict and explain the relative basicities of the NH₂ groups in phenylamine, C₆H₅NH₂, nicotinamide and compound X. (e) The height of the M peak in a mass spectrum of nicotinamide is 80. Calculate the expected height of the M+1 peak. [2] [Total: 12]

Hypophospho	rous acid is an inorganic acid.
The conjugate	e base of hypophosphorous acid is H ₂ PO ₂ ⁻ .
(a) Give the	formula of hypophosphorous acid.
	[1]
(b) H ₂ PO ₂ ⁻ i for electron	s a strong reducing agent. It can be used to reduce metal cations without the need olysis.
equation	1 $HPO_3^{2-} + 2H_2O + 2e^- \iff H_2PO_2^{-} + 3OH^ E^{\Theta} = -1.57V$
(i) In ar [H ₂ F	n experiment, an alkaline $HPO_3^{2-}/H_2PO_2^{-}$ half-cell is constructed with PO_2^{-}] = 0.050 mol dm ⁻³ .
All o	ther ions are at their standard concentration.
Pred	lict how the value of E of this half-cell differs from its E^{Θ} value.
Expl	ain your answer.
	[2]
(ii) The	Cr ³⁺ /Cr half-cell has a standard electrode potential of –0.74 V.
An e half-	electrochemical cell consists of an alkaline ${\rm HPO_3}^{2-}/{\rm H_2PO_2}^-$ half-cell and a ${\rm Cr}^{3+}/{\rm Cr}$ cell.
Calo	culate the standard cell potential, $E_{ m cell}^{ m e}$.
	E _{cell} = V [1]

(iii) Complete the diagram in Fig. 2.1 to show how the standard electrode potential of the Cr³+/Cr half-cell can be measured relative to that of the standard hydrogen electrode.

Identify the chemicals, conditions and relevant pieces of apparatus.

Fig. 2.1

[3]

- (iv) Label Fig. 2.1 to show:
 - which is the positive electrode
 - the direction of electron flow in the external circuit.

[1]

(v) $H_2PO_2^-$ reduces Ni^{2+} to Ni in alkaline conditions.

Use equation 1 to construct the ionic equation for this reaction.

equation 1
$$HPO_3^{2-} + 2H_2O + 2e^- \iff H_2PO_2^- + 3OH^-$$

.....[1

[Total: 9]

8 (a)

by the route shown.	ourcus. It sair be sy	The following the first of the following	Stryiberizerie
CH₃ ↓	CH ₃	CH ₃	
NO ₂ step 1	NH ₂	ep 2 NHCOCH	13
4-nitromethylbenzene		step 3	
CO ₂ CH ₂ CH ₃ step 5	CO ₂ H	step 4 CO ₂ H	ł ₃
benzocaine	W		ŭ
(i) Give the systematic name of cor			[1]
(ii) Suggest the reagents and condit	tions for steps 1–5.		
step 1			
step 2			
step 3			
step 4			
step 5			[6]
Suggest how the basicity of benzoca Explain your answer.	ine would compare	to that of ethylamine.	
			[2]

(b)

- A sample of benzocaine, shown below, was analysed by proton NMR and carbon-13 NMR spectroscopy.
 - (i) Predict the number of peaks that would be seen in the carbon-13 NMR spectrum.

(ii) Benzocaine was dissolved in ${
m CDC}l_3$ and the proton NMR spectrum of this solution was

Suggest why $\mathsf{CDC}l_3$ and not $\mathsf{CHC}l_3$ is used as the solvent when obtaining a proton NMR spectrum.

.....[1]

(iii) Use the *Data Booklet* and the spectrum in (d)(ii) to complete the table for the proton NMR spectrum of benzocaine. The actual chemical shifts, δ , for the four absorptions have been added.

δ/ppm	group responsible for the peak	number of ¹ H atoms responsible for the peak	splitting pattern
1.2			
3.5			
5.5			
7.1–7.4			multiplet

[4]

(iv) Explain the splitting pattern for the absorption at δ 1.2 ppm.

[11]

(v) The proton NMR spectrum of benzocaine dissolved in $\mathrm{D}_2\mathrm{O}$ was recorded. Suggest how this spectrum would differ from the spectrum in (d)(ii). Explain your answer. Benzocaine can also be used to synthesise the dyestuff S by the following route. CO2CH2CH3 step 1 R benzocaine step 2 NaOH(aq), phenol S (i) Suggest the reagents used for step 1.[1] (ii) Suggest structures for compounds R and S and draw them in the boxes. [2] [Total: 25]

(d)

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C} \mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \mathrm{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 \rm K (25 ^{\circ}C))$
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

The Periodic Table of Elements

	18	2	He	helium 4.0	10	Ne	neon 20.2	18	Ā	argon 39.9	36	궃	krypton 83.8	54	Xe	xenon 131.3	98	R	radon	118	Og	oganesson	1	
	17				6	ш	fluorine 19.0	17	Cl	chlorine 35.5	32	Ŗ	bromine 79.9	53	Н	iodine 126.9	85	Ą	astatine	117	<u>r</u>	tennessine		
	16				8	0	oxygen 16.0	16	S	sulfur 32.1	34	Se	selenium 79.0	52	Тe	tellurium 127.6	84	Ро	molod –	116	^	livermorium -		
	15				7	z	nitrogen 14.0	15	₾	phosphorus 31.0	33	As	arsenic 74.9	51	Sp	antimony 121.8	83	Ξ	bismuth 209.0	115	Mc	moscovium		
	14				9	ပ	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	20	S	tin 118.7	82	Ър	lead 207.2	114	Εl	flerovium		
	13				2	Δ	boron 10.8	13	Αl	aluminium 27.0	31	Ga	gallium 69.7	49	디	indium 114.8	81	11	thallium 204.4	113	Ę	nihonium	1	
										12	30	Zu	zinc 65.4	48	B	cadmium 112.4	80	Рg	mercury 200.6	112	ე	copernicium	1	
										7	59	70	copper 63.5	47	Ag	silver 107.9	6/	Αu	gold 197.0	111	Rg	roentgenium	1	
Group										10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	చ	platinum 195.1	110	Ds	darmstadtium	'	
Gr					1					6	27	ပိ	cobalt 58.9	45	格	rhodium 102.9	77	占	iridium 192.2	109	Ĭ	meitnerium		
		-	I	hydrogen 1.0						∞	26	Ьe	iron 55.8	4	Ru	ruthenium 101.1	9/	Os	osmium 190.2	108	Hs	hassium	1	
							1	1		7	25	M	manganese 54.9	43	ပ	technetium -	75	Re	rhenium 186.2	107	B	bohrium	1	
					_	pol	ass			9	24	ပ်	chromium 52.0	42	Mo	molybdenum 95.9	74	≥	tungsten 183.8	106	Sg	seaborgium	1	
					Key	atomic number	atomic symbol	name relative atomic mass			2	23	>	vanadium 50.9	41	g	niobium 92.9	73	<u>ra</u>	tantalum 180.9	105	В	dubnium	
									atc	re			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Ξ	hafnium 178.5	104	弘
										က	21	Sc	scandium 45.0	39	>	yttrium 88.9	57-71	lanthanoids		89–103	actinoids			
	2				4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	88	ഗ്	strontium 87.6	26	Ba	barium 137.3	88	Ra	radium		
	_				ဇ	:=	lithium 6.9	11	Na	sodium 23.0	19	×	potassium 39.1	37	Rb	rubidium 85.5	55	S	caesium 132.9	87	Ļ	francium	1	

71	Ľ	lutetium 175.0	103	۲	lawrencium	I	
70	Υb	ytterbium 173.1	102	No	nobelium	1	
69	T	thulium 168.9	101	Md	mendelevium	I	
89	ш	erbium 167.3	100	Fm	fermium	I	
29	웃	holmium 164.9	66	Es	einsteinium	I	
99	ò	dysprosium 162.5	86	ర	californium	ı	
99	ТР	terbium 158.9	26	益	berkelium	I	
64	Вg	gadolinium 157.3	96	Cu	curium	ı	
63	En	europium 152.0	95	Am	americium	ı	
62	Sm	samarium 150.4	96	Pu	plutonium	ı	
61	Pm	promethium -	93	ď	neptunium	ı	
09	PN	neodymium 144.4	92	\supset	uranium	238.0	
69	Ā	praseodymium 140.9	91	Ра	protactinium	231.0	
58	Ce	cerium 140.1	06	띡	thorium	232.0	
57	La	lanthanum 138.9	89	Ac	actinium	I	

Bilal Hameed

actinoids

lanthanoids