Mock Exam 1 | CANDIDATE
NAME | | | | | |-------------------|---------------------------|---------------------|---------|------------------| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | | CHEMISTRY | | | | 970 ⁻ | | Paper 4 A Level | Structured Questions | | 2 hours | 10 minute | | You must answe | er on the question paper. | | | | | No additional m | aterials are needed. | | | | | INCTRUCTION | 10 | | | | ## **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do **not** use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. ## **INFORMATION** - The total mark for this paper is - The number of marks for each question or part question is shown in brackets 110 - The Periodic Table is printed in the question paper. - Important values, constants and standards are printed in the question paper. 1 more steps. (a) The energy cycle shown can be used, along with suitable data, to calculate the enthalpy change of hydration of Ca²⁺(g). Each arrow indicates a transformation, W, X, Y and Z. Each transformation consists of one or The following data and data from the Data Booklet should be used. electron affinity of Cl(g) = $-349 \, \mathrm{kJ \, mol^{-1}}$ enthalpy change of atomisation of Ca(s) = $+193 \, \mathrm{kJ \, mol^{-1}}$ enthalpy change of formation of $CaCl_2(s)$ = $-795 \, \mathrm{kJ \, mol^{-1}}$ enthalpy change of solution of $CaCl_2(s)$ = $-83 \, \mathrm{kJ \, mol^{-1}}$ enthalpy change of hydration of $Cl^-(g)$ = $-364 \, \mathrm{kJ \, mol^{-1}}$ (i) Calculate the value of the enthalpy change corresponding to transformation W. Show your working. enthalpy change $\mathbf{W} = \dots k J \, \text{mol}^{-1}$ [2] (ii) Use your answer to (a)(i) and other data to calculate the value of the enthalpy change corresponding to transformation **Z**. enthalpy change **Z** = kJ mol⁻¹ [2] | (iii) | Use your answer to (a)(ii) to calculate the enthalpy change of hydration of Ca ²⁺ (g). | |------------------|--| | | | | | enthalpy change of hydration of $Ca^{2+}(g) = \dots kJ mol^{-1}$ [2] | | (iv) | Write an expression, in terms of W , X , Y and/or Z , to show how the enthalpy changes of two of the transformations can be used to calculate the lattice energy of $CaCl_2(s)$. | | | lattice energy of $CaCl_2(s) = $ [1] | | (v) | State whether the lattice energy of $CaCl_2(s)$ is more or less exothermic than the lattice energy of $MgF_2(s)$. | | | Explain your answer. | | | | | | | | | [1] | | (b) The | e sulfates of the Group 2 elements vary in solubility down Group 2. | | (i) | Give the names of two solutions that could be mixed to form barium sulfate. [1] | | | | | (ii) | State and explain how the solubilities of the sulfates of the Group 2 elements vary down Group 2. | [4] | Entropy is a measure of the disorder of a system. (c) Assume the entropy, S, for H_2O is zero at 0 K. Sketch a graph on the axes to show how the entropy changes for H₂O between 0 K and 300 K. $S/JK^{-1}mol^{-1}$ 300 200 temperature/K [2] Place **one tick** (\checkmark) in **each row** of the table to show the sign of the entropy changes, $\triangle S$. (d) ΔS is negative ΔS is positive solid dissolving in water water boiling to steam [1] The equation for a reaction that produces methanol is shown. $CO_2(g) + 3H_2(g) \rightarrow CH_3OH(g) + H_2O(g)$ (e) Use relevant bond energies from the Data Booklet to calculate the enthalpy change, ΔH , for this gas phase reaction. $\Delta H = \text{kJ mol}^{-1} [2]$ [Total: 18] Two elements, **V** and **W**, are in adjacent groups in the Periodic Table. ${f V}$ reacts with oxygen to form an acidic gas, ${f X}$. ${f V}$ forms an anion with formula ${f VO}_m^-$. ${\bf W}$ reacts with oxygen to form an acidic gas, ${\bf Y}$. ${\bf W}$ forms an anion with formula ${\bf WO_n}^{2-}$. A solution of WO_n^{2-} forms a white precipitate with $Ba^{2+}(aq)$ but shows no visible reaction with $Mg^{2+}(aq)$. (a) Complete the table below. | | identity or value | |---|-------------------| | ٧ | | | Х | | | m | | | W | | | Υ | | | n | | [3] | (b) | By referring to enthalpy changes, explain why WO_n^{2-} forms a white precipitate with Ba ²⁺ (aq) but shows no visible reaction with Mg^{2+} . | |-----|---| | | | | | [3] | | | [Total: 6] | | | | | | | | | | | | | Oleocanthal, \mathbf{Q} , is a natural compound found in olive oil. It has antioxidant and anti-inflammatory properties and is thought to have a protective effect against Alzheimer's disease. (a) Q shows optical and cis-trans isomerism. On the structure of $\bf Q$ above, **circle** the functional group that shows cis-trans isomerism and indicate with an **asterisk** (*) the chiral carbon atom. [1] (b) Q can be isolated from olive oil by partitioning between two solvents. | (i) | Explain what is meant by the term <i>partition coefficient</i> . | |-----|--| | | | | | | |
 |
 |
 |
 | | |------|------|------|------|--| | | | | | | (ii) When 40.0 cm³ of hexane was shaken with 10.0 cm³ of a solution containing 0.25 g of **Q** in 10.0 cm³ of methanol, it was found that 0.060 g of **Q** was extracted into the hexane. Calculate the partition coefficient, $K_{\mathrm{partition}}$, of ${\bf Q}$ between hexane and methanol. | K | | | | ro1 | |---|---|--|--|-----| | ĸ | = | | | 1/1 | | | | | | | | reagent | | structure | of produc | ct(s) | | t | ype of reacti | on | |--------------------------------|--|-----------------|------------------------|-----------------------|-----------------------|-----------------------------|------------------------|-------| | excess
Br ₂ (aq) | | | | | | | | | | NaBH₄ | | | | | | | | | | xcess hot
NaOH(aq) | oil, it v | a sample of Q
was found that t | he therapeution | a labora
c activity | tory was
of the sy | compare
nthetic sa | ed to a natu
ample was l | ral sample fr
ower. | om (| | Sugge | est a reason for | this. | [7 | Total | | (a) | Col | palt is a transition element that forms complex ions with oxidation states +2 and +3. | | |-----|------|---|-----| | | Exp | plain what is meant by the term transition element. | | | | | | | | | | | [1] | | (b) | The | e following scheme shows some reactions of $[Co(H_2O)_6]^{2+}$. | | | | | $[Co(H_2O)_6]^{2+}$ | | | | | $OH^{-}(aq)$ excess $NH_{3}(aq)$ $Cl^{-}(aq)$ | | | | | precipitate A solution of B solution of C | | | | (i) | State the formula of each of the following. | | | | | A | | | | | В | | | | | C | [0] | | | (ii) | State the colour of the following solutions. | [2] | | | | [Co(H ₂ O) ₆] ²⁺ | | | | | solution of B | | | | | solution of C | | [2] | | | tion is made by dissons the copper comple | | xcess of aqueous ammonia. | This solution | |-----|--------|---|---|--|----------------| | (c) | (i) | Write an expression | n for the $K_{\rm stab}$ of $[{ m Cu}({ m NH_3})_4]^{2+}$ | | | | | | K _{stab} = | | | | | | (ii) | State the colour of | the solution of $[Cu(NH_3)_4]^{2+}$. | | [1] | | | | | | | [1] | | | remain | | ne forms NH ₃ gas. The colo | upboard so that $\mathrm{NH_3}$ is release ur of the solution changes; a | | | | | ole of Cu(OH) ₂ is add
ed copper complex, Y | | loric acid. A reaction takes pl | ace forming a | | | A sam | | | A reaction takes place formin | ng a coloured | | | [Cu(NF | $[H_3)_4]^{2+}$, Y and Z are dif | ferent colours. | | | | (d) | | iggest an equation fo
[Cu(NH ₃) ₄] ²⁺ is heated | | ⁺ to form Cu(OH)₂ as the aqu | leous solution | | | | | | | [1] | | (e) | Su | iggest an equation for | | n concentrated hydrochloric ac | | | | | | | | [2] | | (f) | | omplete the table with
mula of complex Z . | the colour and geometry o | f complex Y and the colour, | geometry and | | | | | Υ | Z | | | | | colour of complex | | | | | | ge | eometry of complex | | | | | | f | ormula of complex | | | | | | | | | | [2] | | | | | | | | | | | | | | | (g) | Ed | ds ^{4–} and edta ^{4–} are polydentate ligands tha | at form octahedral complexes with Fe³+(aq). | | |-------|---|---|---------------------------| | | edds ⁴⁻ | edta ⁴⁻ | | | | H CO₂⁻ | CO ₂ - | | | | -0,C, N, ∧ \ | $N CO_2^-$ | | | | N CO ₂ - | N, V | | | | CO ₂ - | CO ₂ - | | | Th | e formulae of the complexes are [Fe(edds |)] ⁻ and [Fe(edta)] ⁻ respectively. | | | (i) | On the diagram of edds ⁴⁻ , circle each ato | m that forms a bond to the Fe³+ ion in [Fe(edds | s)] [–] .
[1] | | (ii) | [Fe(edds)] ⁻ is red and [Fe(edta)] ⁻ is yello | W. | | | | Explain why the two complexes have diff | ferent colours. | [2] | | (iii) | When edds ⁴⁻ (aq) is added to Fe ³⁺ (aq), th | e following reaction occurs. | | | | $[Fe(H_2O)_6]^{3+}(aq) + edds^{4-}(aq) \rightleftharpoons$ | ≥ [Fe(edds)] ⁻ (aq) + 6H ₂ O(l) | | | | State the type of reaction that occurs. | | | | | | | [1] | | | | | ניו | | | | | | | | | | | [Total: 16] lodine monochloride, IC l, is a yellow-brown gas. It reacts with hydrogen gas under certain conditions as shown. $$2 \text{IC} \textit{l}(g) \ + \ \text{H}_{\textit{2}}(g) \ \rightarrow \ 2 \text{HC} \textit{l}(g) \ + \ \text{I}_{\textit{2}}(g)$$ Experiments are performed using different starting concentrations of ICl and H_2 . The initial rate of each reaction is measured. The following results are obtained. | experiment | [IC1]/moldm ⁻³ | [H ₂]/moldm ⁻³ | relative rate of reaction | |------------|---------------------------|---------------------------------------|---------------------------| | 1 | 4.00 × 10 ⁻³ | 4.00 × 10 ⁻³ | 1.00 | | 2 | 4.00 × 10 ⁻³ | 7.00×10^{-3} | 1.75 | | 3 | 4.00 × 10 ⁻³ | 1.00 × 10 ⁻² | 2.50 | | 4 | 5.00 × 10 ⁻³ | 8.00 × 10 ⁻³ | 2.50 | | 5 | 7.00 × 10 ⁻³ | 8.00 × 10 ⁻³ | 3.50 | | (a) | Identify a change, taking place in the reaction mixture, that would enable measurements of the rate of this reaction to be made. | |-----|--| | | [1] | | (b) | Use the data in the table to show that the reaction is first order with respect to $H_2(g)$. | | | | | | | | | | | | | | | [1] | | | | | (c) | Use the data in the table to show that the reaction is first order with respect to $ICl(g)$. | | . , | | | | | | | | | | | | | | | | [1] | | | | | (d) | Complete the rate equation for the reaction between $ICl(g)$ and $H_2(g)$. | | (4) | Complete the fate equation for the reastion between 100 (g) and 1/2(g). | | | 241 | | | rate =[1] | | | | | | | | (e) | Use experiment 3 to calculate a numerical value for the rate constant, k. | |-----|--| | | k =[1] | | (f) | The reaction 2IC $l(g)$ + H $_2(g) \rightarrow$ 2HC $l(g)$ + I $_2(g)$ is first order with respect to IC $l(g)$ and first order with respect to H $_2(g)$. | | | Suggest a mechanism for this reaction. You should assume | | | the mechanism has two steps, the first step is much slower than the second step. | | | first step → | | | second step → | | | | | (g) | An alternative method is used to show that the reaction is first order with respect to $H_2(g)$. This method uses a large excess of $ICl(g)$ and measures how the concentration of $H_2(g)$ varies with time. | | | (i) Describe two ways of using these results to show the reaction is first order with respect to $H_2(g)$ concentration. | | | | | | | | | | | | | | | | | | [3] | | | (ii) Explain the reason for using a large excess of $ICl(g)$. | | | | | | [1] | | (h) | A chemical reaction may be speeded up by the presence of a catalyst. | | | Explain why a catalyst increases the rate of a chemical reaction. | | | | | | [1] | | | [Total: 12] | | The structure of nicotinamide is shown. | |--| | nicotinamide | | NH ₂ | | (a) The nitrogen atom in the six-membered ring has one electron in an unhybridised p-orbital. This
electron becomes delocalised, becoming part of a single delocalised system of electrons. This
delocalised system also includes: | | electrons from the carbon atoms in the six-membered ring the two electrons in the π bond of the C=O group the two electrons in the lone pair on the nitrogen atom of the amide group. | | (i) State the number of delocalised electrons in one nicotinamide molecule. | | [1] | | (ii) Predict the H–N–H bond angle in the NH ₂ group in nicotinamide. | | [1] | | (b) Nicotinamide can be synthesised from nicotinic acid. | | The synthesis involves two steps. | | nicotinic acid E nicotinamide | | OH step 1 NH ₂ | (i) Draw the structural formula of E in the box. (ii) Give the name or formula of a suitable reagent for step 2. [1] (c) Nicotinamide reacts separately with aqueous acid and aqueous alkali. The six-membered ring remains unchanged in these reactions. Complete the reaction scheme below to give the structural formula of the organic product of each reaction. HCl(aq) reflux [2] (d) Nicotinamide can be reduced to compound X. X (i) Identify a suitable reducing agent for this reaction.[1] Predict and explain the relative basicities of the NH₂ groups in phenylamine, C₆H₅NH₂, nicotinamide and compound X. (e) The height of the M peak in a mass spectrum of nicotinamide is 80. Calculate the expected height of the M+1 peak. [2] [Total: 12] | Hypophospho | rous acid is an inorganic acid. | |---|--| | The conjugate | e base of hypophosphorous acid is H ₂ PO ₂ ⁻ . | | (a) Give the | formula of hypophosphorous acid. | | | [1] | | (b) H ₂ PO ₂ ⁻ i
for electron | s a strong reducing agent. It can be used to reduce metal cations without the need olysis. | | equation | 1 $HPO_3^{2-} + 2H_2O + 2e^- \iff H_2PO_2^{-} + 3OH^ E^{\Theta} = -1.57V$ | | (i) In ar [H ₂ F | n experiment, an alkaline $HPO_3^{2-}/H_2PO_2^{-}$ half-cell is constructed with PO_2^{-}] = 0.050 mol dm ⁻³ . | | All o | ther ions are at their standard concentration. | | Pred | lict how the value of E of this half-cell differs from its E^{Θ} value. | | Expl | ain your answer. | | | | | | | | | | | | [2] | | (ii) The | Cr ³⁺ /Cr half-cell has a standard electrode potential of –0.74 V. | | An e
half- | electrochemical cell consists of an alkaline ${\rm HPO_3}^{2-}/{\rm H_2PO_2}^-$ half-cell and a ${\rm Cr}^{3+}/{\rm Cr}$ cell. | | Calo | culate the standard cell potential, $E_{ m cell}^{ m e}$. | | | | | | | | | E _{cell} = V [1] | | | | | | | | | | | | | | | | | | | (iii) Complete the diagram in Fig. 2.1 to show how the standard electrode potential of the Cr³+/Cr half-cell can be measured relative to that of the standard hydrogen electrode. Identify the chemicals, conditions and relevant pieces of apparatus. Fig. 2.1 [3] - (iv) Label Fig. 2.1 to show: - which is the positive electrode - the direction of electron flow in the external circuit. [1] (v) $H_2PO_2^-$ reduces Ni^{2+} to Ni in alkaline conditions. Use equation 1 to construct the ionic equation for this reaction. equation 1 $$HPO_3^{2-} + 2H_2O + 2e^- \iff H_2PO_2^- + 3OH^-$$[1 [Total: 9] 8 (a) | by the route shown. | ourcus. It sair be sy | The following the first of the following | Stryiberizerie | |--|-----------------------|--|----------------| | CH₃
↓ | CH ₃ | CH ₃ | | | NO ₂ step 1 | NH ₂ | ep 2
NHCOCH | 13 | | 4-nitromethylbenzene | | step 3 | | | CO ₂ CH ₂ CH ₃ step 5 | CO ₂ H | step 4 CO ₂ H | ł ₃ | | benzocaine | W | | ŭ | | (i) Give the systematic name of cor | | | [1] | | (ii) Suggest the reagents and condit | tions for steps 1–5. | | | | step 1 | | | | | step 2 | | | | | step 3 | | | | | step 4 | | | | | step 5 | | | [6] | | Suggest how the basicity of benzoca Explain your answer. | ine would compare | to that of ethylamine. | | | | | | | | | | | | | | | | [2] | (b) - A sample of benzocaine, shown below, was analysed by proton NMR and carbon-13 NMR spectroscopy. - (i) Predict the number of peaks that would be seen in the carbon-13 NMR spectrum. (ii) Benzocaine was dissolved in ${ m CDC}l_3$ and the proton NMR spectrum of this solution was Suggest why $\mathsf{CDC}l_3$ and not $\mathsf{CHC}l_3$ is used as the solvent when obtaining a proton NMR spectrum.[1] (iii) Use the *Data Booklet* and the spectrum in (d)(ii) to complete the table for the proton NMR spectrum of benzocaine. The actual chemical shifts, δ , for the four absorptions have been added. | δ/ppm | group responsible for the peak | number of ¹ H atoms responsible for the peak | splitting pattern | |---------|--------------------------------|---|-------------------| | 1.2 | | | | | 3.5 | | | | | 5.5 | | | | | 7.1–7.4 | | | multiplet | [4] (iv) Explain the splitting pattern for the absorption at δ 1.2 ppm. [11] (v) The proton NMR spectrum of benzocaine dissolved in $\mathrm{D}_2\mathrm{O}$ was recorded. Suggest how this spectrum would differ from the spectrum in (d)(ii). Explain your answer. Benzocaine can also be used to synthesise the dyestuff S by the following route. CO2CH2CH3 step 1 R benzocaine step 2 NaOH(aq), phenol S (i) Suggest the reagents used for step 1.[1] (ii) Suggest structures for compounds R and S and draw them in the boxes. [2] [Total: 25] (d) ## Important values, constants and standards | molar gas constant | $R = 8.31 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$ | |---------------------------------|---| | Faraday constant | $F = 9.65 \times 10^4 \mathrm{C} \mathrm{mol}^{-1}$ | | Avogadro constant | $L = 6.022 \times 10^{23} \mathrm{mol}^{-1}$ | | electronic charge | $e = -1.60 \times 10^{-19} \mathrm{C}$ | | molar volume of gas | $V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K)
$V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions | | ionic product of water | $K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 \rm K (25 ^{\circ}C))$ | | specific heat capacity of water | $c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$ | The Periodic Table of Elements | | 18 | 2 | He | helium
4.0 | 10 | Ne | neon
20.2 | 18 | Ā | argon
39.9 | 36 | 궃 | krypton
83.8 | 54 | Xe | xenon
131.3 | 98 | R | radon | 118 | Og | oganesson | 1 | | |-------|----|---|----|-----------------|-----|---------------|------------------|------------------------------|-----|--------------------|----|----|-------------------|------------------|----|--------------------|-----------------|-------------|-------------------|-------------------|-----------|------------------|---------|---| | | 17 | | | | 6 | ш | fluorine
19.0 | 17 | Cl | chlorine
35.5 | 32 | Ŗ | bromine
79.9 | 53 | Н | iodine
126.9 | 85 | Ą | astatine | 117 | <u>r</u> | tennessine | | | | | 16 | | | | 8 | 0 | oxygen
16.0 | 16 | S | sulfur
32.1 | 34 | Se | selenium
79.0 | 52 | Тe | tellurium
127.6 | 84 | Ро | molod – | 116 | ^ | livermorium
- | | | | | 15 | | | | 7 | z | nitrogen
14.0 | 15 | ₾ | phosphorus
31.0 | 33 | As | arsenic
74.9 | 51 | Sp | antimony
121.8 | 83 | Ξ | bismuth
209.0 | 115 | Mc | moscovium | | | | | 14 | | | | 9 | ပ | carbon
12.0 | 14 | S | silicon
28.1 | 32 | Ge | germanium
72.6 | 20 | S | tin
118.7 | 82 | Ър | lead
207.2 | 114 | Εl | flerovium | | | | | 13 | | | | 2 | Δ | boron
10.8 | 13 | Αl | aluminium
27.0 | 31 | Ga | gallium
69.7 | 49 | 디 | indium
114.8 | 81 | 11 | thallium
204.4 | 113 | Ę | nihonium | 1 | | | | | | | | | | | | | 12 | 30 | Zu | zinc
65.4 | 48 | B | cadmium
112.4 | 80 | Рg | mercury
200.6 | 112 | ე | copernicium | 1 | | | | | | | | | | | | | 7 | 59 | 70 | copper
63.5 | 47 | Ag | silver
107.9 | 6/ | Αu | gold
197.0 | 111 | Rg | roentgenium | 1 | | | Group | | | | | | | | | | 10 | 28 | Z | nickel
58.7 | 46 | Pd | palladium
106.4 | 78 | చ | platinum
195.1 | 110 | Ds | darmstadtium | ' | | | Gr | | | | | 1 | | | | | 6 | 27 | ပိ | cobalt
58.9 | 45 | 格 | rhodium
102.9 | 77 | 占 | iridium
192.2 | 109 | Ĭ | meitnerium | | | | | | - | I | hydrogen
1.0 | | | | | | ∞ | 26 | Ьe | iron
55.8 | 4 | Ru | ruthenium
101.1 | 9/ | Os | osmium
190.2 | 108 | Hs | hassium | 1 | | | | | | | | | | 1 | 1 | | 7 | 25 | M | manganese
54.9 | 43 | ပ | technetium
- | 75 | Re | rhenium
186.2 | 107 | B | bohrium | 1 | | | | | | | | _ | pol | ass | | | 9 | 24 | ပ် | chromium
52.0 | 42 | Mo | molybdenum
95.9 | 74 | ≥ | tungsten
183.8 | 106 | Sg | seaborgium | 1 | | | | | | | | Key | atomic number | atomic symbol | name
relative atomic mass | | | 2 | 23 | > | vanadium
50.9 | 41 | g | niobium
92.9 | 73 | <u>ra</u> | tantalum
180.9 | 105 | В | dubnium | | | | | | | | | | | | atc | re | | | 4 | 22 | F | titanium
47.9 | 40 | Zr | zirconium
91.2 | 72 | Ξ | hafnium
178.5 | 104 | 弘 | | | | | | | | | | | | က | 21 | Sc | scandium
45.0 | 39 | > | yttrium
88.9 | 57-71 | lanthanoids | | 89–103 | actinoids | | | | | | 2 | | | | 4 | Be | beryllium
9.0 | 12 | Mg | magnesium
24.3 | 20 | Ca | calcium
40.1 | 88 | ഗ് | strontium
87.6 | 26 | Ba | barium
137.3 | 88 | Ra | radium | | | | | _ | | | | ဇ | := | lithium
6.9 | 11 | Na | sodium
23.0 | 19 | × | potassium
39.1 | 37 | Rb | rubidium
85.5 | 55 | S | caesium
132.9 | 87 | Ļ | francium | 1 | | | 71 | Ľ | lutetium
175.0 | 103 | ۲ | lawrencium | I | | |----|----|-----------------------|-----|-----------|--------------|-------|--| | 70 | Υb | ytterbium
173.1 | 102 | No | nobelium | 1 | | | 69 | T | thulium
168.9 | 101 | Md | mendelevium | I | | | 89 | ш | erbium
167.3 | 100 | Fm | fermium | I | | | 29 | 웃 | holmium
164.9 | 66 | Es | einsteinium | I | | | 99 | ò | dysprosium
162.5 | 86 | ర | californium | ı | | | 99 | ТР | terbium
158.9 | 26 | 益 | berkelium | I | | | 64 | Вg | gadolinium
157.3 | 96 | Cu | curium | ı | | | 63 | En | europium
152.0 | 95 | Am | americium | ı | | | 62 | Sm | samarium
150.4 | 96 | Pu | plutonium | ı | | | 61 | Pm | promethium
- | 93 | ď | neptunium | ı | | | 09 | PN | neodymium
144.4 | 92 | \supset | uranium | 238.0 | | | 69 | Ā | praseodymium
140.9 | 91 | Ра | protactinium | 231.0 | | | 58 | Ce | cerium
140.1 | 06 | 띡 | thorium | 232.0 | | | 57 | La | lanthanum
138.9 | 89 | Ac | actinium | I | | Bilal Hameed actinoids lanthanoids